簡易檢索 / 詳目顯示

研究生: 陸永馗
Lu, Yung-Kuei
論文名稱: 具高效能且多用途之里德-所羅門解碼器設計
High-performance Reed-Solomon Decoder for Multi-standard Applications
指導教授: 謝明得
Shieh, Ming-Der
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 62
中文關鍵詞: 里德-所羅門解碼器多重模式高效能
外文關鍵詞: High-Performance, Reed-Solomon decoder, Multi-standard, Berlekamp-Massey
相關次數: 點閱:65下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   多重模式里德-所羅門解碼器是一種具有多種不同改錯能力的設計。它提供了一種富彈性的共同解決方案,以因應系統在不同通道環境下的需求。在多重模式解碼器中,往往需要使用到所謂的係數選擇器,而此電路包含了大量的多工器,以用來調整解碼器內部模式切換時的資料流。在本論文中,我們所提出之設計主要改良自基於Sarwate所提之reformulated inversionless Berlekamp-Massey演算法架構,我們首先利用折疊技巧,使其能在不犧牲資料輸出速率的原則下,依然符合絶大多數的應用。同時,配合我們所發展的無係數擇器之硬體配置方式,可使本設計不僅具有低成本的優點,更能因其架構簡單且有高度的規則性而利於VLSI的實現。
      經由UMC 0.18um 1P6M的製程實作後發現,本設計之解碼器的最快操作時脈為400MHz,資料處理速率則可達到3.2Gbps。相對於目前其他基於extended Euclidean演算法的設計而言,本解碼器兼具有面積上與效能上的優勢。綜合上述所言,本論文所提出之架構可適用於大部分一般性的應用。

     Multi-mode Reed-Solomon (RS) decoders provide a flexible and possibly unified solution that can be used in systems demanding various levels of error-immunity capability for economically handling different channel conditions. Inside the multi-mode RS decoders, circuitry composed of a large amount of multiplexers, known as the coefficient selector, might be employed to adjust the data flows between processing elements so as to comply with different operation modes. In this thesis, a folded architecture of RS decoders is first derived based on the reformulated inversionless Berlekamp-Massy architecture derived by Sarwate, which can retain the throughput rate of the reformulated architecture in many practical applications. In conjunction with the developed coefficient-selector-free multi-mode arrangement, the resulting design possesses not only area-efficient property but also very simple and regular interconnect topology that makes it very suitable for VLSI realization.
     Implementation results exhibit that the achievable throughput rate of the developed decoder, implemented in UMC 0.18um 1P6M process, is 3.2Gbps at the maximum clock rate of 400MHz. It provides both area and speed advantages in comparison with the existing work based on extended Euclidean algorithm. In summary, the proposed high-performance architecture can be applied to most practical applications.

    TABLE OF CONTENTS TABLE OF CONTENTS vi LIST OF TABLES ix LIST OF FIGURES x Chapter 1 Introduction 1  1.1 Digital Communication System and Channel Coding 1  1.2 Motivation 3  1.3 Organization of This Thesis 4 Chapter 2 Reed-Solomon Codes 5  2.1 Finite Fields 5  2.2 The Generator Polynomial Approach to Reed-Solomon Codes 7   2.2.1 Encoding of Reed-Solomon Codes 7   2.2.2 Decoding of Reed-Solomon Codes 9  2.3 Key Equation Solver (KES) 11   2.3.1 Peterson-Gorenstein-Zierler (PGZ) Algorithm 11   2.3.2 Berlekamp-Massay Algorithm 13   2.3.3 extended Euclidean Algorithm 16   2.3.4 Comparison 18 Chapter 3 Architecture of Multi-Mode Reed-Solomon Decoders 19  3.1 Background and Definition of Multi-mode Reed-Solomon decoders 19   3.1.1 Multi-mode Reed-Solomon Encoding and Decoding 19   3.1.2 Reformulated Inversionless BM Architecture 21  3.2 Folded RiBM Architecture and Operation 24   3.2.1 Derivation of the Folded RiBM Architecture 24   3.2.2 Operation of the Folded RiBM Circuitry 26  3.3 Architecture of the Multi-Mode RS Decoders 27   3.3.1 Multi-Mode Key Equator Solver (KES) 27   3.3.2 Multi-Mode Syndrome Computation (SC) 30   3.3.3 Multi-Mode Chien Search & Error Evaluation (CSEE) 31   3.3.4 Multi-Mode RS Decoder 34  3.4 Performance Evaluation 35   3.4.1 Hardware Utilization 35   3.4.2 Application Range 36   3.4.3 Critical Path Delay 37  3.5 Exploration of Errors-and-Erasures for Multi-Mode Decoder 38   3.5.1 Decoding 38   3.5.2 riBM Algorithm for Errors-and-Erasures Decoding 40   3.5.3 Decoder Architecture 41   3.5.4 Comparison 48 Chapter 4 Implementation Results and Analysis 49  4.1 Implementation of Multi-Mode RS Decoder 49   4.1.1 Block Diagram 49   4.1.2 I/O Definition 51   4.1.3 Timing Diagram 51   4.1.4 Synthesized Results 52   4.1.5 Comparison with Other Works 54  4.2 Chip Implementation 55   4.2.1 Specification 55   4.2.2 Layout View 55   4.2.3 Measurement 56   4.2.4 IP Generator 57 Chapter 5 Conclusions and Future Work 58  5.1 Conclusions 58  5.2 Future Work 59 References 60

    [1] E. R. Berlekamp, Algebraic coding theory, Aegean Park Press, 1984.

    [2] S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and Their Applications, IEEE Press, 1994.

    [3] R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, 1983.

    [4] S. Lin, D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hill, 1983.

    [5] H. –C. Chang, C. B. Shung, and C. –Y. Lee, “ A Reed-Solomon Product-code (RS-PC) Decoder Chip for DVD Applications,” IEEE Journal of Solid-State Circuits, vol. 36, no. 2, pp. 229-238, Feb. 2001.

    [6] M. H. Lee, S. B. Choi and J. S. Chang, “A High Speed Reed-Solomon Decoder,” IEEE Transactions on Consumer Electronics, vol. 41, no. 4, pp.1142–1149, Nov. 1995.

    [7] K. Mueller, F. Frieling, H. Kriedt, C. v. Reventlow, R. Schwendt, M. Haas, F. Kuttner, H. Dawid, O. Joeressen, U. Lambrette and M. Vaupel, H. Meyr, “A low-cost DVB compliant Viterbi and Reed Solomon decoder,” IEEE Transactions on Consumer Electronics, vol. 43, no. 3, pp.448–452, August. 1997.

    [8] D. V. Sarwate and N.R. Shanbhag, “High-speed Architectures for Reed-Solomon Decoders,” IEEE Transactions on VLSI systems, vol. 9, no. 5, pp. 641-655. Oct. 2001.

    [9] G. D. Forney, Jr., “On decoding BCH Codes,” IEEE Transactions on Information Theory, vol. IT-11, pp. 549-557, Oct. 1965.

    [10] J. L. Massey, “Shift-register Synthesis and BCH decoding,” IEEE Transactions on Information Theory, vol. IT-15, pp. 122-127, Jan 1969.

    [11] I. S. Reed, M. T. Shih, and T. K. Truong, “VLSI Design of Inverse-free Berlekamp-Massey Algorithm,” IEE Proceedings-E, vol. 138, no. 5, pp. 295-298, Sept. 1991.

    [12] H.Y. Hsu and A.Y. Wu, “VLSI Design of A Reconfigurable Multi-mode Reed-Solomon Codec for High-speed Communication Systems,” Proc. IEEE Asia-Pacific Conference on ASIC, pp.359-362, Aug. 2002.

    [13] H. Lee, “An Area-Efficient Euclidean Algorithm Block for Reed-Solomon Decoder,” Proc. IEEE Computer Society Annual Symposium on VLSI, pp.209-210, Feb. 2003.

    [14] W. Wilhelm, “A New Scalable VLSI Architecture for Reed-Solomon Decoder,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 388-396, Mar. 1999.

    [15] S. Kwon and H. Shin, “An Area-efficient VLSI Architecture of a Reed-Solomon Decoder/Encoder for Digital VCRs,” IEEE Transaction on Consumer Electronics, pp. 1019-1027, Nov. 1997.

    [16] L. Song, M. –L. Yu and M. S. Shaffer, “10- and 40-Gb/s Forward Error Correction Devices for Optical Communications,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp. 1565-1573, Nov. 2002.

    [17] J.C. Huang, C.M. Wu, M.D. Shieh and C.H. Wu, “An Area-efficient Versatile Reed-Solomon Decoder for ADSL,” Proc. IEEE International Symposium on Circuits and System, pp. 517-520, vol. 1, 1999.

    [18] H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yuen, and I. S. Reed, “A VLSI Design of A Pipeline Reed-Solomon Decoder,” IEEE Transactions on Computers, vol. C-34, no. 5, pp. 393-402, May 1985.

    [19] S. Y. Kung, VLSI Array Processors, Prentice Hall, Englewood Cliffs, New Jersey, 1988.

    [20] H. Lee, “Modified Euclidean Algorithm Block for High-Speed Reed-Solomon Decoder,” IEE Electronics Letters, vol.37, no. 14, pp. 903-904, July 2001.

    [21] H. Lee, “High-Speed VLSI Architecture for Parallel Reed-Solomon Decoder,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 2, pp.288-294, April 2003.

    [22] S. M. Kasahara, S. Hirasawa, and T. Namekawa, “A Method for Solving Key Equation for Decoding Goppa Codes,” Information Contr., vol. IT, pp.87-89, Jan. 1975.

    [23] T. Zang and K. K. Parhi, “Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible Polynomials,” IEEE Transactions on Computers, vol. 50, no. 7, pp. 734-749, July 2001.

    [24] R. P. Brent and H. T. Kung, “Systolic VLSI Arrays for Polynomial GCD Computation,” IEEE Transactions on Computers, vol. c-33, no. 8, pp. 731-736, August 1984.

    [25] A. Raghupathy and K. J. R. Liu, “Algorithm-Based Low-Power/High-Speed Reed-Solomon Decoder Design,” IEEE Transactions on Circuits and Systems, vol. 47, no. 11, pp. 1254-1270, November 2000.

    下載圖示 校內:2008-08-31公開
    校外:2010-08-31公開
    QR CODE