簡易檢索 / 詳目顯示

研究生: 王亭勻
Wang, Ting-Yun
論文名稱: 柑橘材料於光感和記憶體元件之應用
Citrus material for the application of photodetector and memory devices
指導教授: 陳宏斌
Ghen, Hong-Bin
共同指導教授: 張御琦
Chang, Yu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 55
中文關鍵詞: 電阻式記憶體有機光感測器柑橘硝酸鋁鹽
外文關鍵詞: RRAM, Organic photodetector, Citrus, Aluminum nitrate
相關次數: 點閱:120下載:57
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於一次性電子產品發展快速,造成大量的電子廢棄物產生。雖然無機材料應用於半導體元件中的技術已經相當成熟,且無機材料具有良好的器件性能,但仍無法忽視背後對整個生態系統所造成的負面影響。反觀可再生有機材料,有著成本低、製作簡單、機械性能優良、可在低溫溶液中使用等等的優點,提供電子元件材料另一種選擇。本研究中我們以金屬絕緣體金屬(Metal-Insulator-Metal, MIM) 的架構進行元件設計,並以可再生材的生物性材料柑橘果膠(citrus)作為絕緣層,分別製作成電阻式隨機存儲記憶體(Resistance Random Access Memory, RRAM)以及有機光感測器 (Organic Photodetector, OPD)。
    在RRAM的研究成果中我們發現,柑橘記憶裝置具有穩定的電阻轉換行為。為了清楚地了解上電極金屬和柑橘薄膜間的界面影響,我們研究了不同上電極 (TE) 材料對元件電阻轉換的影響。與Au/citrus/ITO 和 Ti/citrus/ITO 元件相比,Al/citrus/ITO 元件可以在直流電壓下進行100個I-V cycles,而 阻值比僅略有下降。此外, Al/citrus/ITO 元件具有超過 104 的高 ON/OFF 比和出色的均勻性,這歸因於使用上電極Al可與柑橘間的界面快速形成氧化物層 (AlOx),提升並穩定元件的性能。 除了RRAM的應用,我們也試圖將柑橘果膠作為OPD的主動層進行測試,研究中我們將柑橘果膠並摻入硝酸鋁 (AlC05) 的OPD。透過電性量測,發現 0.5 mg/mL 的 AlC 濃度可提供最高的開/關比和可接受的上升和下降時間。此外優化後的元件(Al/AlC05/ITO)在 440 nm 可見光下在 0.1 V 偏壓下表現出良好的穩定性和可重複性。
    從研究成果得知,我們利用可再生材料並以溶液法製備的生物性元件,具有各項可靠及穩定的表現。這些發現及應用可作為未來電子元件永續發展發展的設計指南。

    The generation of electronic waste is rapidly increasing despite of the development in the disposable electronic products. The semiconductor technology based on inorganic materials is quite mature due to its reliable device performance, however, the negative impact of electronic wastes on the entire ecosystem cannot be ignored. In contrast, renewable organic materials-based semiconductor technology has the advantages of low-cost manufacturing, simple production, excellent mechanical properties, and can be fabricated in low temperature solutions, providing alternative option for electronic component materials. In this study, we utilized the Metal-Insulator-Metal (MIM) structure to fabricate resistive random-access memory (RRAM) by using the renewable biomaterial citrus pectin (citrus) as the insulating layer that can also employed as an organic Photodetector (OPD).
    In the detailed study, the citrus memory device has been found with stable resistance switching performances. It was very crucial to understand the interfacial effect between the top electrode metal and the citrus film, so we investigated the effect of different top electrode (TE) materials on the resistive switching of the element. Al/citrus/ITO devices exhibited 100 I-V cycles at DC voltage with a very slight drop in resistance ratio compared to Au/citrus/ITO and Ti/citrus/ITO devices. In addition, the Al/citrus/ITO element possessed a high ON/OFF ratio of more than 104 with excellent uniformity, which can be attributed to the rapid formation of oxide layer (AlOx) at the interface between Al and citrus insulating layer and stabilized the device performance.
    In addition, we also tried to optimize the active layer of OPD by incorporating citrus pectin with aluminum nitrate (AlC0.5). The effects of different concentrations of aluminum nitrate on the morphology and optical properties were further investigated using SEM, UV-vis and AFM. The electrical measurements satisfied the AlC concentration of 0.5 mg/mL provided the highest ON/OFF ratio and acceptable rise and fall times. Nevertheless, the optimized device (Al/AlC0.5/ITO) structure exhibited good stability and repeatability below 0.1 V bias under the visible light of 440 nm wavelength.
    Based on the results, the bio-electrical devices prepared by the solution method using renewable materials have various reliable and stable performances. These devices can serve as design guidelines for the sustainable development of future electronic technology.

    摘要 I Abstract II Acknowledgment IV Table of contents V List of figures VIII Chapter 1 Introduction 1 1.1. Nonvolatile Random Access Memory (NVRAM) 1 1.1.1. Ferroelectric Random Access Memory (FeRAM) 2 1.1.2. Magnetic Random Access Memory (MRAM) 3 1.1.3. Phase Change Random Access Memory (PCRAM) 4 1.1.4. Resistive Random Access Memory (RRAM) 5 1.2. Introduction of photodetector 6 1.2.1. Photoconductor 7 1.2.2. Photodiode 8 1.2.3. Organic photodetector 9 1.3. Thesis Organization 11 Chapter 2 Experiment Details 12 2.1. Fabrication equipment 12 2.1.1. Spin coater 12 2.1.2. Oven 13 2.1.3. Magnetron Sputter 14 2.2. Measurement equipment 15 2.2.1. X-ray photoelectron spectroscopy (XPS) 15 2.2.2. Atomic Force Microscope (AFM) 17 2.2.3. Focused Ion Beam System (FIB) 18 2.2.4. Transmission electron microscopy (TEM) 19 2.2.5. Scanning Electron Microscope (SEM) 20 2.2.6. Ultraviolet–visible spectroscopy (UV-vis) 22 2.2.7. Fourier-transform infrared spectroscopy (FTIR) 23 2.2.8. Photoluminescence Spectroscopy (PL) 24 Chapter 3 Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films 25 3.1. Introduction 25 3.2. Device Fabrication 26 3.3. Results and Discussion 27 3.3.1. The Physical Properties of the Device 27 3.3.2. The Electrical Properties of the Device 29 3.4. Summary 34 Chapter 4 Solution-processed organic photodetector with renewable material 35 4.1. Introduction 35 4.2. Device Fabrication 36 4.3. Results and Discussion 38 4.4. Summary 45 Chapter 5 Future works 46 Reference 47

    [1] S. J. Lee, C. P. Lee, D. L. Hou, R. J. Anderson, and D. L. Miller, "Static random access memory using high electron mobility transistors," IEEE Electron Device Lett 5(4), 115-117 (1984).
    [2] K. Natori, M. Ogura, K. Maeguchi, S. Taguchi, and H. Iwai, "A 64 Kbit MOS dynamic random access memory," IEEE J Solid-State Circuits 14(2), 482-485 (1979).
    [3] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, "Flash memory cells-an overview," Proc IEEE Inst Electr Electron Eng 85(8), 1248-1271 (1997).
    [4] S. YunSeung, "Non-volatile memory technologies for beyond 2010," Digest of Technical Papers. 2005 Symposium on VLSI Circuits, 156-159 (2005).
    [5] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges," Adv. Mater 21, 2632-2663 (2009).
    [6] M. Chi and H. Wu, "Technologies and materials for memory with full compatibility to CMOS," 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, " 823-826 (2008).
    [7] D. A. Buck, "Ferroelectrics for Digital Information Storage and Switching," Massachusetts Inst of Tech Cambridge Digital Computer Lab, (1952).
    [8] S. Lai, "Current status of the phase change memory and its future," IEEE International Electron Devices Meeting,10.1.1-10.1.4 (2003).
    [9] Khvalkovskiy et al., "Basic principles of STT-MRAM cell operation in memory arrays," J. Phys. D 46(7), 074001 (2013).
    [10] S. R. Lee et al., "Multi-level switching of triple-layered TaOx RRAM with excellent reliability for storage class memory," 2012 Symposium on VLSI Technology (VLSIT), 71-72 (2012).
    [11] Y. Jiang, W.J. Zhang, J.S. Jie, X.M. Meng, X. Fan, and S.T. Lee., "Photoresponse properties of CdSe single-nanoribbon photodetectors," Adv. Funct. Mater. 17, 1795-1800 (2007).
    [12] M. Razeghi and A. Rogalski., "Semiconductor ultraviolet detectors," J. Appl. Phys. 79, 7433-7473 (1996).
    [13] H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi. H.-H. Fang, C. Wang, B.R. Ecker,
    Y. Gao, M.A. Loi, and L. Cao., "Sensitive X-ray detectors made of
    methylammonium lead tribromide perovskite single crystals," Nat. Photonics
    10, 333-339 (2016).
    [14] M. Fujita., "Nanocavity brightens silicon", Nat. Photonics 7, 264–265 (2013).
    [15] M. Ahmadi, T. Wu, and B. Hu., "A Review on Organic-Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics," Adv. Mater 29, 1605242 (2017).
    [16] B. Xu, D. Chen, and R. C. Hayward., "Mechanically gated electrical switches by creasing of patterned metal/elastomer bilayer films," Adv. Mater 26, 4381–4385 (2014).
    [17] R. C. Hayward, D. Chen, and B. Xu., "Mechanically gated electrical switches by creasing of patterned metal/elastomer bilayer films, " U.S. Patent No. 10, 138, 542 (2018).
    [18] C. Wang, B. B. Xu, J. G. Terry, S. Smith, A. J. Walton, S. Wang, H. Lv, and Y. Li., "Flexible, strain gated logic transducer arrays enabled by initializing surface instability on elastic bilayers," Adv. Opt. Mater. 7, 031509 (2019).
    [19] H. Lu, M. Lei, C. Zhao, B. Xu, J. Leng, and Y. Q. Fu., "Structural design of flexible Au electrode to enable shape memory polymer for electrical actuation," Smart Mater Struct 24, 045015 (2015).
    [20] W. Cao, C. Liu, and P. Jia., "Feature Extraction and Classification of Citrus Juice by Using an Enhanced L-KSVD on Data Obtained from Electronic Nose," Sens. Transducers 19, 916 (2019).
    [21] W. Zhao, E. Belhaire, C. Chappert, and P. Mazoyer., "Power and area optimization for run-time reconfiguration system on pro- grammable chip based on magnetic random-access memory," IEEE Trans. Magn. 45, 776–780 (2009).
    [22] W. Wang., "Magnetic random accessible memory based magnetic content addressable memory cell design," IEEE Trans. Magn. 46, 1967–1970 (2010).
    [23] M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. E. Ahn, and C. B. Lee, et al., "Two series oxide resistors applicable to high speed and high-density nonvolatile memory," Adv. Mater., 19, 3919–3923 (2007).
    [24] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu, and T. Y. Tseng., "Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices, " IEEE Electron Device Lett 28, 366–368 (2007).
    [25] E. Ambrosi, A. Bricalli, M. Laudato, and D. Ielmini., "Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices. Faraday Discuss," Faraday Discuss. 213, 87–98 (2019).
    [26] C. C. Lin, Y. P. Chang, C. C. Ho, Y. S. Shen, and B. S., "Chiou, Effect of Top Electrode Materials on the Nonvolatile Resistive Switching Characteristics of CCTO Films," IEEE Trans. Magn. 47, 633–636 (2011).
    [27] J. J. Ke, T. C. Wei, D. S. Tsai, C. H. Lin, and J. H. He., "Surface effects of electrode-dependent switching behavior of resistive random-access memory," Appl. Phys. Lett. 109, 131603 (2016).
    [28] W. Si, W. Lei, Z. Han, Y. Zhang, Q. Hao, and M. Xia., "Electrochemical sensing of acetaminophen based on poly(3,4- ethylenedioxythiophene)/graphene oxide composites," Sensors Actuators B Chem. 193, 823–829 (2014).
    [29] C. K. Chua, A. Ambrosi, and M. Pumera., "Graphene oxide reduction by standard industrial reducing agent: Thiourea dioxide," J. Mater. Chem. 22, 11054 (2012).
    [30] I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee., "Reduced graphene oxide by chemical graphitization," Nat. Commun. 1, 73 (2010).
    [31] Y. C. Chang, J. C. Jian, Y. L. Hsu, W. Y. Huang, and S. J. Young., "A Green Strategy for Developing a Self-Healing Gelatin Resistive Memory Device," ACS Appl. Polym. Mater. 11, 5318–5326 (2020).
    [32] Y. C. Chang, C. J. Lee, L. W. Wang, and Y. H. Wang., "Highly Uniform Resistive Switching Properties of Solution-Processed Silver- Embedded Gelatin Thin Film," Small 13, 1703888 (2018).
    [33] Y. H. Hwang, H. M. An, and W. J. Cho., "Performance Improvement of the Resistive Memory Properties of InGaZnO Thin Films by Using Microwave Irradiation," J. Appl. Phys. 53, 04EJ04 (2014).
    [34] J. Aburtoa, M. Morana, A. Galanob, and E. Torres-Garcíaa., "Non-isothermal pyrolysis of pectin: A thermochemical and kinetic approach," J. Anal. Appl. Pyrolysis 112, 94–104 (2015).
    [35] H. Yang, R. Yan, H. Chen, H. D. Lee, and C. Zheng., "Characteristics of hemicellulose, cellulose and lignin pyrolysis," Fuel 86, 1781–1788 (2007).
    [36] M. A. Lampert., "Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps," Phys. Rev. 103, 1648–1656 (1956).
    [37] Y. C. Yang, F. Pan, F. Zeng, and M. Liu., "Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization," J. Appl. Phys. 106, 123705 (2009).
    [38] T. Shi, R. Yang, and X. Guo., "Coexistence of analog and digital resistive switching in BiFeO3-based memristive devices," Solid State Ion. 296, 114–119 (2016).
    [39] Y. Zhu, M. Li, J. Liu, Z. Hu, Q. Wang, Y. Zhang, M. Wei, and C. Hu., "Resistive switching behavior in Pt/YSZ/Nb:SrTiO3 heterostructure for nonvolatile multilevel memories," J. Alloy. Compd. 612, 30–33 (2014).
    [40] Y. Zhu, M. Li, H. Zhou, Z. Hu, X. Liu, and H. Liao., "Improved bipolar resistive switching properties in CeO2/ZnO stacked hetero-structures," Semicond. Sci. Technol. 28, 015023 (2013).
    [41] Y. Zhu, M. Li, H. Zhou, Z. Hu, X. Liu, X. Fang, B. Sebo, G. Fang, and X. Zhao., "Nonvolatile bipolar resistive switching in an Ag/TiO2/Nb: SrTiO3/In device," J. Phys. D Appl. Phys. 45, 375303 (2012).
    [42] Z. S. Wang, F. Zeng, J. Yang, C. Chen, Y. C. Yang, and F. Pan., "Reproducible and Controllable Organic Resistive Memory Based on Al/Poly(3,4-ethylene-dioxythiophene): Poly(styrenesulfonate)/Al Structure," Appl. Phys. Lett. 97, 253301 (2010).
    [43] Y. C. Chang, R. Y. Xue, and Y. H. Wang., "Multilayered Barium Titanate Thin Films by Sol-Gel Method for Nonvolatile Memory Application," IEEE Trans. Electron Devices 61, 4090–4097 (2014).
    [44] Y. C. Chang, and Y. H., "Wang, Resistive Switching Behavior in Gelatin Thin Films for Nonvolatile Memory Application," ACS Appl. Mater. Interfaces 6, 5413–5421 (2014).
    [45] W. C. Luo, T. H. Hou, K. L. Lin, Y. J. Lee, and T. F. Lei., "Reversible Transition of Resistive Switching Induced by Oxygen-Vacancy and Metal Filaments in HfO2," Solid-State Electron. 89, 167–170 (2013).
    [46] N. Kumari, M. Pandey, K. Hamada, D. Hirotani, S. Nagamatsu, S. Hayase, S. S. Pandey., "Role of Device Architecture and AlOx Interlayer in Organic Schottky Diodes and Their Interpretation by Analytical Modeling," J. Appl. Phys. 126, 125501 (2019).
    [47] Y. C. Chang, J. C. Jian, M. Y. Chuang, and Y. L. Hsu, W. Y. Huang, S. J. Young., "Metal and Carbon Filaments in Bio-memory Device through Controlled the Al/Apple Pectin Interface," ACS Appl. Electron. Mater. 2, 2798–2805 (2020).
    [48] Y. C. Chang, J. C. Jian, Y. L. Hsu, W. Y. Huang, Z. C. Chen, and K.M. Liu., "Repeatable room-temperature self-healing memory device based on gelatin films," Flex. Print. Electron. 5, 045005 (2020).
    [49] M. Bockarjova, W. J. W. Botzen, M. H. vanSchie, and M. J. Koetse., "Property Price Effects of Green Interventions in Cities: A Meta-Analysis and Implications for Gentrification," Environ. Sci. Policy 112, 293–304 (2020).
    [50] X. Liu, Y. Lin, Y. Liao, J. Wu, and Y. Zheng., "Recent Advances in Organic Near-Infrared Photodiodes," J. Mater. Chem. C 6(14), 3499–3513 (2018).
    [51] Z. Wu, W. Yao, A. E. London, J. D. Azoulay, and T. N. Ng., "Elucidating the Detectivity Limits in Shortwave Infrared Organic Photodiodes," Adv. Funct. Mater. 28(18), 1–9 (2018).
    [52] Q. Lin, A. Armin, P. L. Burn, and P. Meredith., "Near Infrared Photodetectors Based on Sub-Gap Absorption in Organohalide Perovskite Single Crystals, " Laser Photonics Rev. 10(6), 1047–1053 (2016).
    [53] X. Tang, Z. Zu, H. Shao, W. Hu, M. Zhou, M. Deng, W. Chen, Z. Zang, T. Zhu, and J. Xue., "All-Inorganic Perovskite CsPb(Br/I)3 Nanorods for Optoelectronic Application," Nanoscale 8(33), 15158–15161 (2016).
    [54] X. Wang, J. Huang, S. Han, and J. Yu., "High Photoresponse Inverted Ultraviolet Photodectectors Consisting of Iridium Phosphor Doped into Poly(N-Vinylcarbazole) Polymeric Matrix," Appl. Phys. Lett. 104, 173304 (2014).
    [55] R. Ciriminna, A. Fidalgo, R. Delisi, D. Carnaroglio, G. Grillo, G. Cravotto, and A. Tamburino, L. M.Ilharco, and M. Pagliaro., "High-Quality Essential Oils Extracted by an Eco-Friendly Process from Different Citrus Fruits and Fruit Regions," ACS Sustain. Chem. Eng. 5(6), 5578–5587 (2017).
    [56] H. Ren, J. D. Chen,Y. Q. Li, and J. X. Tang., "Recent Progress in Organic Photodetectors and Their Applications," Adv. Sci. 8(1), 1–23 (2021).
    [57] C. K. Renshaw, X. Xu, and S. R. Forrest., "A Monolithically Integrated Organic Photodetector and Thin Film Transistor," Org. Electron. 11(1), 175–178 (2010).
    [58] S. Lee, H. Seong, S. G. Im, H. Moon, and S. Yoo., "Organic Flash Memory on Various Flexible Substrates for Foldable and Disposable Electronics," Nat. Commun. 8(1), 725 (2017).
    [59] M. T. Ghoneim, and M. M. Hussain., "Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics," Electronics 4(3), 424–479 (2015).
    [60] H. Alzahrani, K. Sulaiman, A. Y. Mahmoud, and R. R. Bahabry., "Study of Organic Visible-Blind Photodetector Based on Alq3:NPD Blend for Application in near-Ultraviolet Detection," Adv. Opt. Mater. 110, 110490 (2020).
    [61] V. C. Spanoudaki, and C. S. Levin., "Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET)," Sensors 10, 10484–10505 (2010).
    [62] C. Wang, X. Zhang, and W. Hu., "Organic Photodiodes and Phototransistors toward Infrared Detection: Materials, Devices, and Applications," Chem. Soc. Rev. 49(3), 653–670 (2020).
    [63] G. Bouquet, J. Thorstensen, K. A. H. Bakke, and P. Risholm., "Design Tool for TOF and SL Based 3D Cameras," Opt. Express 25(22), 27758 (2017).
    [64] J. Liu, Y. Wang, H. Wen, Q. Bao, L. Shen, and L. Ding., "Organic Photodetectors: Materials, Structures, and Challenges," Sol. RRL 4(7), 2000139 (2020).
    [65] S. Royo, and M. Ballesta-Garcia., "An Overview of Lidar Imaging Systems for Autonomous Vehicles," Appl. Sci. 9(19), 4093 (2019).
    [66] Y. Udum, P. Denk, G. Adam, D. H. Apaydin, A. Nevosad, C. Teichert, M. S. White, N. S. Sariciftci, and M. C. Scharber., "Inverted Bulk-Heterojunction Solar Cell with Cross-Linked Hole-Blocking Layer," Org. Electron. 15(5), 997–1001 (2014).
    [67] P. Peumans, and S. R. Forrest., "Separation of Geminate Charge-Pairs at Donor-Acceptor Interfaces in Disordered Solids," Chem. Phys. Lett. 398(1–3), 27–31 (2004).
    [68] J. Singh, M. Narayan, D. Ompong, and F. Zhu., "Dissociation of Charge Transfer Excitons at the Donor–Acceptor Interface in Bulk Heterojunction Organic Solar Cells," J. Mater. Sci. Mater. Electron. 28(10), 7095–7099 (2017).
    [69] Q. Wang, Y. Li, P. Song, R. Su, F. Ma, and Y. Yang., "Non-Fullerene Acceptor-Based Solar Cells: From Structural Design to Interface Charge Separation and Charge Transport," Polymers 9(12), 692 (2017).
    [70] F. Gao, Y. Zhao, X. Zhang, and J. You., "Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells," Adv. Energy Mater. 10(13), 1902650 (2019).
    [71] J. Xie, H. Ping, T. Tan, L. Lei, H. Xie, X. Y. Yang, and Z. Fu., "Bioprocess-Inspired Fabrication of Materials with New Structures and Functions," Prog. Mater. Sci. 105, 100571 (2019).
    [72] Y. Yang, A. Kushima, W. Han, H. Xin, and J. Li., "Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature," Nano Lett. 18(4), 2492–2497 (2018).
    [73] M. L. Fishman, and P. H. Cooke., "The Structure of High-Methoxyl Sugar Acid Gels of Citrus Pectin as Determined by AFM," Carbohydr. Res. 344(14), 1792-1797 (2009).
    [74] J. Aburto, M. Moran, A. Galano, and E. Torres-García., "Non-Isothermal Pyrolysis of Pectin: A Thermochemical and Kinetic Approach," J. Anal. Appl. Pyrolysis 112, 94–104 (2015).
    [75] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng., "Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis," Fuel 86(12–13), 1781–1788 (2007).
    [76] T. Li, Z. Chen, Y. Wang, J. Tu, X. Deng, Q. Li, and Z. Li., "Materials for Interfaces in Organic Solar Cells and Photodetectors," ACS Appl. Mater. Interfaces 12(3), 3301–3326 (2020).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE