| 研究生: |
江宇家 Chiang, Yu-Chia |
|---|---|
| 論文名稱: |
氮摻雜石墨衍生之含鈷層狀矽酸鹽應用於乙醯丙酸氫化為γ -戊內酯之研究 Nitrogen-doped Co/SiO2 catalyst derived from carbothermal reduction of cobalt phyllosilicate and its application in levulinic acid hydrogenation to γ-valerolactone |
| 指導教授: |
林裕川
Lin, Yu-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 鈷 、氫化 、乙醯丙酸 、氮 、層狀矽酸鹽 |
| 外文關鍵詞: | Cobalt, Hydrogenation, Levulinic acid, Nitrogen, Phyllosilicate |
| 相關次數: | 點閱:52 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製備出具有高催化活性及穩定性的 N 修飾 Co/SiO2 觸媒並應用於乙醯丙酸加氫反應為γ-戊內酯。方法為先以水熱法將葡萄糖(glucose, G)與三聚氰胺(melamine, M)鍍層於鈷層狀矽酸鹽(cobalt phyllosilicate, CoPS)表面,再以碳熱還原方式在適當的溫度下碳化觸媒(GM@CoPS-X, X=碳化溫度)。在測試的觸媒中,GM@CoPS-700 展現最佳的γ-戊內酯產率(90.3 %)和良好的穩定性(五次重複性測試僅下降 8.0 % 的初始活性)。我們由 Co 和 N的 XPS 以及吡啶紅外光譜發現 N-doped carbon 的強電子親和力促使 Co 將電子轉移至鄰近的 N 物質上,生成了新的 Coδ+ 強路易士酸點位,協助反應中脫水環化的過程。此外,觸媒表面上的 Pyridinic-N 可以降低氫氣吸附及解離所需要之活化能,加速氫氣的解離速率,促進整體乙醯丙酸氫化為γ-戊內酯的過程。
An active and stable Co/SiO2 catalyst decorated by N species were developed and applied in the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL). The catalyst was first synthesized by grafting glucose (G) and melamine (M) on cobalt phyllosilicate (CoPS) hydrothermally, and then by pyrolyzing GM/CoPS at a designated temperature for carbothermal reduction (denoting as GM@CoPS-X; X = temperature). Among tested catalysts, GM@CoPS-700 showed the most promising GVL productivity (1684 mmol GVL/gsurface Co /h), and recyclability (a 8% loss of initial activity) in five consecutive trials. Doped N species were found to improve the concentration of Coδ+ with a strong Lewis acidity. The strong Lewis acidic Coδ+ and pyridinic nitrogen was found to be the key in enhancing the activity of Co-based catalysts derived from CoPS in LA hydrogenation.
1.Huber, G. W.; Iborra, S.; Corma, A., Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical reviews 2006, 106 (9), 4044-4098.
2.Cherubini, F., The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy conversion and management 2010, 51 (7), 1412-1421.
3.Alonso, D. M.; Wettstein, S. G.; Mellmer, M. A.; Gurbuz, E. I.; Dumesic, J. A., Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy & Environmental Science 2013, 6 (1), 76-80.
4.龍向東, 乙醯丙酸催化加氢製備γ-戊内酯的研究進展. 分子催化 2014, 28 (4), 384-392.
5.Wettstein, S. G.; Alonso, D. M.; Chong, Y.; Dumesic, J. A., Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy & Environmental Science 2012, 5 (8), 8199-8203.
6.Yan, K.; Yang, Y.; Chai, J.; Lu, Y., Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals. Applied Catalysis B: Environmental 2015, 179, 292-304.
7.Yan, Z.-p.; Lin, L.; Liu, S., Synthesis of γ-valerolactone by hydrogenation of biomass-derived levulinic acid over Ru/C catalyst. Energy & Fuels 2009, 23 (8), 3853-3858.
8.Bian, Z.; Kawi, S., Preparation, characterization and catalytic application of phyllosilicate: A review. Catalysis Today 2020, 339, 3-23.
9.Burattin, P.; Che, M.; Louis, C., Characterization of the Ni (II) phase formed on silica upon deposition− precipitation. The Journal of Physical Chemistry B 1997, 101 (36), 7060-7074.
10.Sivaiah, M.; Petit, S.; Beaufort, M.; Eyidi, D.; Barrault, J.; Batiot-Dupeyrat, C.; Valange, S., Nickel based catalysts derived from hydrothermally synthesized 1: 1 and 2: 1 phyllosilicates as precursors for carbon dioxide reforming of methane. Microporous and Mesoporous Materials 2011, 140 (1-3), 69-80.
11.Zhang, Q.; Wang, M.; Zhang, T.; Wang, Y.; Tang, X.; Ning, P., A stable Ni/SBA-15 catalyst prepared by the ammonia evaporation method for dry reforming of methane. RSC advances 2015, 5 (114), 94016-94024.
12.Zhan, G.; Zeng, H. C., Charge-switchable integrated nanocatalysts for substrate-selective degradation in advanced oxidation processes. Chemistry of Materials 2016, 28 (13), 4572-4582.
13.Zhang, C.; Yue, H.; Huang, Z.; Li, S.; Wu, G.; Ma, X.; Gong, J., Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2: enhanced metal–support interaction and catalytic stability. ACS Sustainable Chemistry & Engineering 2013, 1 (1), 161-173.
14.Kong, X.; Zhu, Y.; Zheng, H.; Li, X.; Zhu, Y.; Li, Y.-W., Ni nanoparticles inlaid nickel phyllosilicate as a metal–acid bifunctional catalyst for low-temperature hydrogenolysis reactions. Acs Catalysis 2015, 5 (10), 5914-5920.
15.Gong, J.; Yue, H.; Zhao, Y.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S.; Ma, X., Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0–Cu+ sites. Journal of the American Chemical Society 2012, 134 (34), 13922-13925.
16.Yue, H.; Zhao, Y.; Zhao, S.; Wang, B.; Ma, X.; Gong, J., A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nature communications 2013, 4 (1), 1-7.
17.Park, J. C.; Kang, S. W.; Kim, J.-C.; Kwon, J. I.; Jang, S.; Rhim, G. B.; Kim, M.; Chun, D. H.; Lee, H.-T.; Jung, H., Synthesis of Co/SiO 2 hybrid nanocatalyst via twisted Co 3 Si 2 O 5 (OH) 4 nanosheets for high-temperature Fischer–Tropsch reaction. Nano Research 2017, 10 (3), 1044-1055.
18.Kim, J. S.; Park, I.; Jeong, E. S.; Jin, K.; Seong, W. M.; Yoon, G.; Kim, H.; Kim, B.; Nam, K. T.; Kang, K., Amorphous cobalt phyllosilicate with layered crystalline motifs as water oxidation catalyst. Advanced Materials 2017, 29 (21), 1606893.
19.Shen, M.; Wei, C.; Ai, K.; Lu, L., Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: from mechanistic insights to structural optimization. Nano Research 2017, 10 (5), 1449-1470.
20.Wan, S.; Wu, J.; Wang, D.; Liu, H.; Zhang, Z.; Ma, J.; Wang, C., Co/N-doped carbon nanotube arrays grown on 2D MOFs-derived matrix for boosting the oxygen reduction reaction in alkaline and acidic media. Chinese Chemical Letters 2021, 32 (2), 816-821.
21.Li, W.; Geng, W.; Liu, L.; Shang, Q.; Liu, L.; Kong, X., In situ-generated Co embedded in N-doped carbon hybrids as robust catalysts for the upgrading of levulinic acid in aqueous phase. Sustainable Energy & Fuels 2020, 4 (4), 2043-2054.
22.Cao, Y.; Liu, K.; Wu, C.; Zhang, H.; Zhang, Q., In situ-formed cobalt embedded into N-doped carbon as highly efficient and selective catalysts for the hydrogenation of halogenated nitrobenzenes under mild conditions. Applied Catalysis A: General 2020, 592,117434.
23.Dutta, S.; Iris, K.; Tsang, D. C.; Ng, Y. H.; Ok, Y. S.; Sherwood, J.; Clark, J. H., Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chemical Engineering Journal 2019, 372, 992-1006.
24.Kuwahara, Y.; Kango, H.; Yamashita, H., Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over sulfonic acid-functionalized UiO-66. ACS Sustainable Chemistry & Engineering 2017, 5 (1), 1141-1152.
25.Abdelrahman, O. A.; Heyden, A.; Bond, J. Q., Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C. ACS catalysis 2014, 4 (4), 1171-1181.
26.Upare, P. P.; Lee, J.-M.; Hwang, D. W.; Halligudi, S. B.; Hwang, Y. K.; Chang, J.-S., Selective hydrogenation of levulinic acid to γ-valerolactone over carbon-supported noble metal catalysts. Journal of Industrial and Engineering Chemistry 2011, 17 (2), 287-292.
27.Braden, D. J.; Henao, C. A.; Heltzel, J.; Maravelias, C. C.; Dumesic, J. A., Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid. Green chemistry 2011, 13 (7), 1755-1765.
28.Galletti, A. M. R.; Antonetti, C.; De Luise, V.; Martinelli, M., A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chemistry 2012, 14 (3), 688-694.
29.Murugesan, K.; Alshammari, A. S.; Sohail, M.; Jagadeesh, R. V., Levulinic Acid Derived Reusable Cobalt-Nanoparticles-Catalyzed Sustainable Synthesis of γ-Valerolactone. ACS Sustainable Chemistry & Engineering 2019, 7 (17), 14756-14764.
30.Novodárszki, G.; Solt, H. E.; Valyon, J.; Lónyi, F.; Hancsók, J.; Deka, D.; Tuba, R.; Mihályi, M. R., Selective hydroconversion of levulinic acid to γ-valerolactone or 2-methyltetrahydrofuran over silica-supported cobalt catalysts. Catalysis Science & Technology 2019, 9 (9), 2291-2304.
31.Barla, M. K.; Velagala, R. R.; Minpoor, S.; Madduluri, V. R.; Srinivasu, P., Biomass derived efficient conversion of levulinic acid for sustainable production of γ-valerolactone over cobalt based catalyst. Journal of Hazardous Materials 2021, 405, 123335.
32.Costa, L.; Camino, G., Thermal behaviour of melamine. Journal of thermal analysis 1988, 34 (2), 423-429.
33.Ostrovski, O.; Zhang, G.; Kononov, R.; Dewan, M. A. R.; Li, J., Carbothermal Solid State Reduction of Stable Metal Oxides. steel research international 2010, 81 (10), 841-846.
34.Bian, Z.; Kawi, S., Highly carbon-resistant Ni–Co/SiO 2 catalysts derived from phyllosilicates for dry reforming of methane. Journal of CO2 Utilization 2017, 18, 345-352.
35.Fan, S.; Wang, Y.; Li, Z.; Zeng, Z.; Guo, S.; Huang, S.; Ma, X., Carbon layer-coated ordered mesoporous silica supported Co-based catalysts for higher alcohol synthesis: The role of carbon source. Chinese Chemical Letters 2020, 31 (2), 525-529.
36.Eshun, J.; Wang, L.; Ansah, E.; Shahbazi, A.; Schimmel, K.; Kabadi, V.; Aravamudhan, S., Characterization of the physicochemical and structural evolution of biomass particles during combined pyrolysis and CO2 gasification. Journal of the Energy Institute 2019, 92 (1), 82-93.
37.Zafar, Z.; Ni, Z. H.; Wu, X.; Shi, Z. X.; Nan, H. Y.; Bai, J.; Sun, L. T., Evolution of Raman spectra in nitrogen doped graphene. Carbon 2013, 61, 57-62.
38.Pham, H. N.; Anderson, A. E.; Johnson, R. L.; Schwartz, T. J.; O’Neill, B. J.; Duan, P.; Schmidt-Rohr, K.; Dumesic, J. A.; Datye, A. K., Carbon overcoating of supported metal catalysts for improved hydrothermal stability. ACS Catalysis 2015, 5 (8), 4546-4555.
39.Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and applied chemistry 2015, 87 (9-10), 1051-1069.
40.Van den Berg, R.; Elkjaer, C. F.; Gommes, C. J.; Chorkendorff, I.; Sehested, J.; de Jongh, P. E.; de Jong, K. P.; Helveg, S., Revealing the formation of copper nanoparticles from a homogeneous solid precursor by electron microscopy. Journal of the American Chemical Society 2016, 138 (10), 3433-3442.
41.Cai, H.; Jiang, Y.; Feng, J.; Zhang, S.; Peng, F.; Xiao, Y.; Li, L.; Feng, J., Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol. Materials & Design 2020, 191, 108640.
42.Di, W.; Cheng, J.; Tian, S.; Li, J.; Chen, J.; Sun, Q., Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Applied Catalysis A: General 2016, 510, 244-259.
43.Jiang, H.; Gu, J.; Zheng, X.; Liu, M.; Qiu, X.; Wang, L.; Li, W.; Chen, Z.; Ji, X.; Li, J., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy & Environmental Science 2019, 12 (1), 322-333.
44.Dai, Y.; Jiang, C.; Xu, M.; Bian, B.; Lu, D.; Yang, Y., Cobalt in N-doped carbon matrix catalyst for chemoselective hydrogenation of nitroarenes. Applied Catalysis A: General 2019, 580, 158-166.
45.Li, X.; Pan, Y.; Yi, H.; Hu, J.; Yang, D.; Lv, F.; Li, W.; Zhou, J.; Wu, X.; Lei, A.; Zhang, L., Mott–Schottky Effect Leads to Alkyne Semihydrogenation over Pd-Nanocube@N-Doped Carbon. ACS Catalysis 2019, 9 (5), 4632-4641.
46.Zhang, P.; Wang, L.; Li, X., The study of adsorption properties of SAPO-34 molecular sieve by in situ DRIFTS. Guang pu xue yu Guang pu fen xi= Guang pu 2002, 22 (5), 755-757.
47.Wei, C.; Guo, Y.; Zhang, C.; Pang, W.; Zhen, K., Catalytic synthesis of hexyl-naphthalene over H-type zeolites. In Studies in Surface Science and Catalysis, Elsevier: 2004; Vol. 154, pp 2187-2191.
48.Emeis, C., Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. Journal of Catalysis 1993, 141 (2), 347-354.
49.Deerattrakul, V.; Limphirat, W.; Kongkachuichay, P., Influence of reduction time of catalyst on methanol synthesis via CO2 hydrogenation using Cu–Zn/N-rGO investigated by in situ XANES. Journal of the Taiwan Institute of Chemical Engineers 2017, 80, 495-502.
50.Guo, H.; Wang, B.; Qiu, P.; Gao, R.; Sun, M.; Chen, L., N, S-codoped carbon shells embedded with ultrafine co NPs for reductive amination with formic acid. ACS Sustainable Chemistry & Engineering 2019, 7 (9), 8876-8884.
51.Chen, K.; Mori, K.; Watanabe, H.; Nakagawa, Y.; Tomishige, K., C–O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. Journal of catalysis 2012, 294, 171-183.
52.Liu, R.; Li, F.; Chen, C.; Song, Q.; Zhao, N.; Xiao, F., Nitrogen-functionalized reduced graphene oxide as carbocatalysts with enhanced activity for polyaromatic hydrocarbon hydrogenation. Catalysis Science & Technology 2017, 7 (5), 1217-1226.
53.Zea, H.; Lester, K.; Datye, A. K.; Rightor, E.; Gulotty, R.; Waterman, W.; Smith, M., The influence of Pd–Ag catalyst restructuring on the activation energy for ethylene hydrogenation in ethylene–acetylene mixtures. Applied Catalysis A: General 2005, 282 (1-2), 237-245.
54.Ye, R.-P.; Lin, L.; Li, Q.; Zhou, Z.; Wang, T.; Russell, C. K.; Adidharma, H.; Xu, Z.; Yao, Y.-G.; Fan, M., Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catalysis Science & Technology 2018, 8 (14), 3428-3449.
55.Ngo, D. T.; Sooknoi, T.; Resasco, D. E., Improving stability of cyclopentanone aldol condensation MgO-based catalysts by surface hydrophobization with organosilanes. Applied Catalysis B: Environmental 2018, 237, 835-843.
56.Protsenko, I. I.; Nikoshvili, L. Z.; Matveeva, V. G.; Sulman, E. M., Kinetic Modelling of Levulinic Acid Hydrogenation Over Ru-Containing Polymeric Catalyst. Topics in Catalysis 2020, 1-11.