簡易檢索 / 詳目顯示

研究生: 彭姿菱
Peng, Tzu-Ling
論文名稱: 於5G環境下設計與實作一多接取邊緣運算之排程與資源管理平台
Design and Implementation of a Scheduling and Resource Management Platform for Multi-access Edge Computing in 5G Environment
指導教授: 楊竹星
Yang, Chu-Sing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 67
中文關鍵詞: 多接取邊緣運算5G核心網路
外文關鍵詞: Multi-access edge computing, 5G, Core network
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多接取邊緣運算(Multi-access Edge Computing, MEC)或稱行動邊緣運算(Mobile Edge Computing)為近幾年熱門技術。隨著行動裝置、物聯網及網路環境變化,網路用戶以及物聯網設備數將不斷成長,對於延遲需求越發嚴格。大量終端設備間之通訊也帶給了核心網巨大的流量,僅依靠雲端技術便難以符合5G三大應用之需求。因此多接取邊緣運算架構的提出,就是解決目前雲端技術所面臨之難題。透過在核心網路中架設邊緣伺服器來減少終端設備延遲以及大量連線服務需求,強化即時的完成任務、減少核心網路、雲端伺服器所需處理的網路流量。
    本論文在符合歐洲電信標準協會(European Telecommunications Standards Institute, ETSI)所提之5G多接取邊緣運算架構下部署實驗平台,並實作多接取邊緣運算平台之容器管理、監控功能。考量到雲端伺服器會向多接取邊緣伺服器供應端租借資源,以供應端角度設計考量不同雲端伺服器公平性之排程來進行欲部署服務之篩選,並依照5G三類應用之特徵進行資源配置。當服務卸載至多接取邊緣伺服器後,考量使用者裝置端所存取之服務對於延遲要求不同,將使用者裝置端之流量依5G服務類型分類,並依照延遲需求來進行使用者裝置端之封包排程,以達到確保低延遲任務優先被完成之目的。由實驗結果可得,本論文所提出之多接取邊緣運算平台將會優先選擇部署低延遲之服務至多接取邊緣伺服器上,並於接收到存取服務之請求時依照欲存取服務之延遲需求進行封包排程。

    The communication of many terminal devices brings high traffic stress to the core network, and it is difficult to meet the 5G application latency requirement by only adopting cloud computing. Multi-access Edge Computing (MEC) is proposed to solve the problems faced by cloud computing. Locating MEC servers in the network edge reduces the delay of terminal devices to access service and the network traffic that the core network and cloud servers need to process.

    In this paper, we implement the 5G MEC platform that follows the European Telecommunications Standards Institute standards. Also, we design the service management and monitoring functions of the MEC platform. Service scheduling is designed from the perspective of the supply side. In addition, to consider the fairness of different cloud servers, the proposed scheduler allocates resources according to the application character. After the service is offloaded to the MEC server, the traffic on the terminal device will be classified according to the 5G service type. Packet from the user equipment (UE) site will be re-scheduling to ensure low-latency tasks are completed first. Based on the experiment, the MEC platform in this paper will preferentially deploy low-latency services to the MEC server; moreover, the MEC server classifies traffic flow from UEs to meet the latency requirements of the task.

    摘要 I 目錄 VIII 圖目錄 X 表目錄 XII 1. 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 1.3. 論文架構 4 2. 背景知識與相關研究 5 2.1. 行動通信介紹 5 2.2. 5G Standalone 架構 5 2.3. 多接取邊緣運算(Multi-access Edge Computing,MEC) 9 2.3.1. 多接取邊緣運算(Multi-access Edge Computing,MEC)概念 9 2.3.2. 多接取邊緣運算框架(Framework) 12 2.3.3. 多接取邊緣運算結合5G Standalone架構 13 2.4. 多接取邊緣運算相關研究 15 2.4.1. 網路架構整合 15 2.4.2. 多接取邊緣運算任務排程及資源優化研究 17 2.4.3. 資安相關研究 18 3. 系統設計與實作 20 3.1. 系統架構 20 3.2. 系統初始化 22 3.2.1. 雲端伺服器之註冊 22 3.2.2. 終端設備之註冊 23 3.3. 雲端及MEC伺服器之互動 25 3.3.1. 雲端伺服器傳送部署服務請求 27 3.3.2. 雲端伺服器傳送終止服務請求 29 3.4. 服務之排程及資源分配 31 3.4.1. 服務排程設計 31 3.4.2. 資源分配演算法 35 3.5. 使用者裝置及MEC伺服器之互動 38 4. 實驗設置與結果分析 41 4.1. 實驗環境說明 41 4.2. MEC架構延遲測試 45 4.3. 使用者裝置端排程實驗 46 4.4. 雲端伺服器請求排程實驗 50 4.5. FTP伺服器實驗 56 5.結論與未來展望 59 參考文獻 60

    [1] "The Mobile Economy", [Online]. Available: https://www.gsma.com/mobileeconomy/wp-content/uploads/2022/02/280222-The-Mobile-Economy-2022.pdf. [Accessed: 20-Jun-2022]
    [2] M. Hazas, J. Morley, O. Bates, and A. Friday, "Are there limits to growth in data traffic? on time use, data generation and speed", ACM International Conference Proceeding Series, no. 14, pp. 1-5, 2016
    [3] Q. Zhang, L. Cheng and R. Boutaba, "Cloud computing: State-of-the-art and research challenges", Journal of Internet Services and Applications, vol. 1, no. 1, pp. 7-18, 2010
    [4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-winski, et al., "Above the clouds: A berkeley view of cloud computing", Berkeley Technical Report UCB-EECS-2009-28, 2009
    [5] Niclas Ek, IEEE 802.1 P,Q - QoS on the MAC level, 1999
    [6] Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. "The Case for VM-Based Cloudlets in Mobile Computing", IEEE Pervasive Computing, vol. 8, pp. 14–23, 2009
    [7] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, "Fog computing and its role in the Internet of Things", Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp. 13-16, 2012
    [8] "ETSI GS MEC 003 V3.1.1", ETSI, 2022
    [9] P. L. Callet, S. Moller and A. Perkis, "Qualinet white paper on definitions of quality of experience (2012) ", European Network on Quality of Experience in Multimedia Systems and Services, 2012
    [10] Yun Chao Hu, Milan Patel, et al., "ETSI White Paper No. 11, Mobile Edge Computing: A key technology towards 5G", ETSI, 2015
    [11] Sami Kekki, Walter Featherstone, et al., "ETSI White Paper No. 28, MEC in 5G networks", ETSI, 2018
    [12] S.-C. Huang, Y.-C. Luo, B.-L. Chen, Y.-C. Chung and J. Chou, "Application-aware traffic redirection: A mobile edge computing implementation toward future 5G networks", 2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2), pp. 17-23, 2017
    [13] P. Du and A. Nakao, "Application specific mobile edge computing through network softwarization", 2016 5th IEEE International Conference on Cloud Networking (Cloudnet), pp. 130-135, 2016
    [14] C.-Y. Chang, K. Alexandris, N. Nikaein, K. Katsalis and T. Spyropoulos, "MEC architectural implications for LTE/LTE-A networks", Proceedings of the Workshop on Mobility in the Evolving Internet Architecture, pp. 13-18, 2016
    [15] A. Huang, N. Nikaein, T. Stenbock, A. Ksentini and C. Bonnet, "Low latency MEC framework for SDN-based LTE/LTE-A networks", 2017 IEEE International Conference on Communications (ICC), pp. 1-6, 2017
    [16] Q. K. Ud Din Arshad, A. U. Kashif and I. M. Quershi, "A Review on the Evolution of Cellular Technologies", 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 989-993, 2019
    [17] "ITU towards “IMT for 2020 and beyond” ", International Telecommunication Union (ITU), 2015
    [18] "3GPP TR 21.915 V15.0.0", 3rd Generation Partnership Project, 2019
    [19] "Specification # 22.891", 3rd Generation Partnership Project, 2016
    [20] free5GC, [online] Available: https://www.free5gc.org/ [Accessed: 21-Jun-2022]
    [21] "Open5GS", [online] Available: https://open5gs.org/ [Accessed: 21-Jun-2022]
    [22] "OpenAirInterface", [online] Available: https://openairinterface.org/ [Accessed: 21-Jun-2022]
    [23] "NextEPC", [online] Available: https://nextepc.org/ [Accessed: 21-Jun-2022]
    [24] "UERANSIM", [online] Available: https://github.com/aligungr/UERANSIM [Accessed: 21-Jun-2022]
    [25] "Announcing Amazon Elastic Compute Cloud (Amazon EC2) - beta", [Online] Available: https://aws.amazon.com/tw/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/. [Accessed: 20-Jun-2022]
    [26] T. Taleb et al., "On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration", IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657-1681, 2017
    [27] P. Ranaweera, A. D. Jurcut and M. Liyanage, "Survey on multi-access edge computing security and privacy", IEEE Communications Surveys & Tutorials, vol. 23, 2021
    [28] M. T. Beck, M. Werner, S. Feld and T. Schimper, "Mobile edge computing: A taxonomy", Proceedings International Conference on Advances in Future Internet (AFIN), pp. 48-54, 2014
    [29] A. Reznik et al., "Developing software for multi-access edge computing", ETSI, 2017
    [30] N. Hassan, K. A. Yau and C. Wu, "Edge computing in 5G: A review", IEEE Access, vol. 7, pp. 127276-127289, 2019
    [31] A. Ksentini and P. A. Frangoudis, "Toward slicing-enabled multi-access edge computing in 5G", IEEE Network, vol. 34, no. 2, pp. 99-105, 2020
    [32] S. D'Oro et al., "SI-EDGE: Network Slicing at the Edge", Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, pp. 1-10, 2020
    [33] T. Taleb, P. A. Frangoudis, I. Benkacem and A. Ksentini, "CDN slicing over a multi-domain edge cloud", IEEE Transactions on Mobile Computing, vol. 19, no. 9, pp. 2010-2027, 2020
    [34] G. Faraci, C. Grasso and G. Schembra, "Reinforcement-learning for management of a 5G network slice extension with UAVs", IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 732-737, 2019
    [35] E. Coronado, G. Cebrián-Márquez, G. Baggio and R. Riggio, "Addressing bitrate and latency requirements for connected and autonomous vehicles", Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, pp. 961-962, 2019
    [36] J. Y. Hwang, L. Nkenyereye, N. M. Sung, J. H. Kim and J. S. Song, "IoT service slicing and task offloading for edge computing", IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11526-11547, 2021
    [37] L. Nkenyereye, J. Y. Hwang, Q.-V. Pham and J. S. Song, "Virtual IoT service slice functions for multiaccess edge computing platform", IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11233-11248, 2021
    [38] C. Campolo, A. Molinaro, A. Iera and F. Menichella, "5G network slicing for vehicle-to-everything services", IEEE Wireless Communications, vol. 24, no. 6, pp. 38-45, 2017
    [39] C. Campolio, A. Molinaro, A. Iera, R. R. Fontes and C. E. Rothenberg, "Towards 5G network slicing for the V2X ecosystem", 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), pp. 400-405, 2018
    [40] A. Huang and N. Nikaein, "Demo: LL-MEC A SDN-based MEC Platform", Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, pp. 483-485, 2017
    [41] P. Shantharama, A. S. Thyagaturu, N. Karakoc, L. Ferrari, M. Reisslein and A. Scaglione, "LayBack: SDN management of multi-access edge computing (MEC) for network access services and radio resource sharing", IEEE Access, vol. 6, pp. 57545-57561, 2018.
    [42] S. D. A. Shah, M. A. Gregory, S. Li and R. D. R. Fontes, "SDN enhanced multi-access edge computing (MEC) for E2E mobility and QoS management", IEEE Access, vol. 8, pp. 77459-77469, 2020.
    [43] P. Zhou et al., "QoE-aware 3D video streaming via deep reinforcement learning in software defined networking enabled mobile edge computing", IEEE Transactions on Network Science and Engineering, vol. 8, no. 1, pp. 419-433, 2021
    [44] H. Peng, Q. Ye and X. S. Shen, "SDN-based resource management for autonomous vehicular networks: A multi-access edge computing approach", IEEE Wireless Communications, vol. 26, no. 4, pp. 156-162, 2019
    [45] T. Subramanya, D. Harutyunyan and R. Riggio, "Machine learning-driven service function chain placement and scaling in MEC-enabled 5G networks", Computer Network, vol. 166, 2020
    [46] M. Wang, B. Cheng, W. Feng and J. Chen, "An efficient service function chain placement algorithm in a MEC-NFV environment", IEEE Global Communications Conference (GLOBECOM), pp. 1-6, 2019
    [47] T. Wang, J. Zu, G. Hu, and D. Peng, "Adaptive service function chain scheduling in mobile edge computing via deep reinforcement learning", IEEE Access, vol. 8, pp. 164 922–164 935, 2020
    [48] X. Yin et al., "Availability-aware service function chain placement in mobile edge computing", IEEE World Congress on Services (SERVICES), pp. 69-74, 2020
    [49] L. L. Wu, S. K. Garg, and R. Buyya, "SLA-based resource allocation for software as a service provider (SaaS) in cloud computing environments," 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 195−204, 2011
    [50] M. Chima Ogbuachi et al., "Context-aware Kubernetes scheduler for edge-native applications on 5G", Journal of Communications Software and Systems, vol. 16, no. 1, 2020
    [51] T. Choudhari, M. Moh and T.-S. Moh, "Prioritized task scheduling in fog computing", Proceedings of the ACMSE 2018 Conference, pp. 1-8, 2018
    [52] A. Samanta and J. Tang, "Dyme: Dynamic microservice scheduling in edge computing enabled IoT", IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6164-6174, 2020
    [53] A. Madej, N. Wang, et al., "Priority-based fair scheduling in edge computing", IEEE 4th International Conference on Fog and Edge Computing (ICFEC), pp. 39–48, 2020
    [54] J. Li, H. Gao, T. Lv and Y. Lu, "Deep reinforcement learning based computation offloading and resource allocation for MEC", IEEE Wireless Communications and Networking Conference (WCNC), pp. 1-6, 2018
    [55] Xu Yangchuan et al., "An Adaptive Mechanism for Dynamically Collaborative Computing Power and Task Scheduling in Edge Environment", IEEE Internet of Things Journal, 2021
    [56] J. Zhu, J. Wang, Y. Huang, F. Fang, K. Navaie and Z. Ding, "Resource allocation for hybrid NOMA MEC offloading", IEEE Transactions on Wireless Communications, vol. 19, no. 7, pp. 4964-4977, 2020
    [57] M. Huang, W. Liu, T. Wang, A. Liu and S. Zhang, "A cloud-MEC collaborative task offloading scheme with service orchestration", IEEE Internet of Things Journal, vol. 7, no. 7, 2019
    [58] Liao, H.; Li, X.; Guo, D.; Kang, W.; Li, J. "Dependency-Aware Application Assigning and Scheduling in Edge Computing", IEEE Internet of Things Journal, vol. 9, pp. 4451–4463, 2021
    [59] A. Mehrabi, M. Siekkinen, et al., "Mobile edge computing assisted green scheduling of on-move electric vehicles", IEEE Systems Journal, vol. 16, no. 1, pp. 1661-1672, 2022
    [60] V. Chamola, A. Sancheti, S. Chakravarty, N. Kumar and M. Guizani, "An IoT and edge computing based framework for charge scheduling and EV selection in V2G systems", IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 10569-10580, 2020
    [61] Z. Yang, Y. Liu, Y. Chen and G. Tyson, "Deep reinforcement learning in cache-aided MEC networks", ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pp. 1-6, 2019
    [62] S. Nath and J. Wu, "Deep reinforcement learning for dynamic computation offloading and resource allocation in cache-assisted mobile edge computing systems", Intelligent and Converged Networks, vol. 1, no. 2, pp. 181-198, 2020
    [63] Y.-J. Seo, J. Lee, J. Hwang, D. Niyato, H.-S. Park and J. K. Choi, "A Novel Joint Mobile Cache and Power Management Scheme for Energy-Efficient Mobile Augmented Reality Service in Mobile Edge Computing", IEEE Wireless Communications Letters, vol. 10, no. 5, pp. 1061-1065, 2021
    [64] "MATLAB", [Online]. Available: https://www.mathworks.com/products/matlab.html [Accessed: 20-Jun-2022]
    [65] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose and R. Buyya, "CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms", Software.: Practice Experience, vol. 41, no. 1, pp. 23-50, 2011
    [66] L. P. Qian, Y. Wu, X. Xu, B. Ji, Z. Shi and W. Jia, "Distributed charging-record management for electric vehicle networks via blockchain", IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2150-2162, 2021
    [67] J. Feng, Y. Wang, J. Wang and F. Ren, "Blockchain-based data management and edge-assisted trusted cloaking area construction for location privacy protection in vehicular networks", IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2087-2101, 2021
    [68] R.-F. Liao et al., "Multi-user physical layer authentication in Internet of Things with data augmentation", IEEE Internet of Things Journal, vol. 7, no. 3, pp. 2077-2088, 2020
    [69] X. Li, S. Liu, F. Wu, S. Kumari and J. J. P. C. Rodrigues, "Privacy preserving data aggregation scheme for mobile edge computing assisted IoT applications", IEEE Internet of Things Journal, vol. 6, no. 3, 2019
    [70] A. Esfahani et al., "A lightweight authentication mechanism for M2M communications in industrial IoT environment", IEEE Internet of Things Journal, vol. 6, no. 1, pp. 288-296, 2019
    [71] "The OpenSSL project. OpenSSL—cryptography and SSL/TLS toolkit", [online] Available: http://www.openssl.org [Accessed: 21-Jun-2022]
    [72] L. Yin, J. Luo and H. Luo, "Tasks scheduling and resource allocation in fog computing based on containers for smart manufacturing", IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4712-4721, 2018
    [73] M. Chima Ogbuachi et al., "Context-aware Kubernetes scheduler for edge-native applications on 5G", Journal of Communications Software and Systems, vol. 16, no. 1, 2020
    [74] Docker, [online] Available: https://www.docker.com/ [Accessed: 21-Jun-2022]
    [75] Kubernetes, [online] Available: https://kubernetes.io/ [Accessed: 21-Jun-2022]
    [76] S.-C. Huang, Y.-C. Luo, B.-L. Chen, Y.-C. Chung and J. Chou, "Application-aware traffic redirection: A mobile edge computing implementation toward future 5G networks", IEEE 7th International Symposium on Cloud and Service Computing (SC2), pp. 17-23, 2017
    [77] H.-T. Chien, Y.-D. Lin, C.-L. Lai and C.-T. Wang, "End-to-End slicing as a service with computing and communication resource allocation for multi-tenant 5G systems", IEEE Wireless Communications, vol. 26, no. 5, pp. 104-112, 2019
    [78] "Service-level agreement", [Online] Available: https://en.wikipedia.org/wiki/Service-level_agreement [Accessed: 21-Jun-2022]
    [79] "Python", [Online] Available: https://www.python.org/ [Accessed: 21-Jun-2022]
    [80] "SQLite", [Online] Available: https://www.sqlite.org/index.html [Accessed: 21-Jun-2022]
    [81] "ping(8) ", [Online] Available: https://linux.die.net/man/8/ping [Accessed: 21-Jun-2022]
    [82] "iperf(1)", [Online] Available: https://linux.die.net/man/1/iperf [Accessed: 21-Jun-2022]
    [83] R. Jain, A. Durresi and G. Babic, "Throughput fairness index: An explanation", [Online] Available: https://www.cse.wustl.edu/~jain/atmf/ftp/af_fair.pdf, 1999 [Accessed: 21-Jun-2022]

    無法下載圖示 校內:2027-08-25公開
    校外:2027-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE