簡易檢索 / 詳目顯示

研究生: 許雅菁
Hsu, Ya-Ching
論文名稱: 利用物件導向影像分析技術及傾斜航照進行都市地區分類
Applying Object-based Image Analysis Technique and Oblique Aerial Imagery for Urban Area Classification
指導教授: 饒見有
Rau, Jiann-Yeou
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 71
中文關鍵詞: 傾斜航照物件導向分析影像分類
外文關鍵詞: Oblique aerial imagery, OBIA, Image classification
相關次數: 點閱:95下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著三維地理資訊系統的發展與電子地圖的演進,數碼城市的建置已變成現今重要的課題。我們能透過網路平台瀏覽各大城市的三維樣貌,業者或研究人員亦能透過數碼城市進行三維空間分析,且比起傳統二維平面地圖,三維地圖能提供更多空間資訊,觀看起來也更為直覺。近幾年來,隨者影像匹配技術與攝影系統的發展,我們可以透過多視角的航照影像來輔助數碼城市的建立,相較於傳統垂直航照,傾斜視角的航照影像能同時提供地物的側面資訊,故常被利用於牆面紋理貼圖及建物模型的重建等用途。搭配密集匹配技術,我們亦可經由影像獲得地表點雲,若配合傾斜航照影像亦可得到建物牆面的點雲,相較於空載光達系統,此種資料來源較為經濟且密集。本研究因此提出利用多視角航照影像進行密集匹配所產生的大量點雲作為地物分類時的輔助高程資訊,並針對多視角航照原始影像以物件導向影像分析技術進行都市區地物分類,以協助後續數碼城市語意資訊之萃取。
    近十年來,物件導向影像分類技術逐漸取代了傳統上以像元為基礎的分類方法,其主要特點是比起根據像元本身的特性或鄰近像元間的關係,以具有同質性的像元組成的物件,可提供更多便於辨識的物件特徵,例如形狀、紋理與拓樸關係等,故可更準確且合理的偵測出目標類別,且分類成果也能更趨近人眼判識的結果。在本研究中,我們將物件導向影像分析技術應用於都市區傾斜航照原始影像之分類。一開始先透過影像分割演算法將影像分成若干區塊,又稱為物件。再根據各物件的光譜、幾何、紋理及物件間之拓樸關係等特性,訂定階層式的分類規則,由粗至細逐步將影像分為草地、樹木、牆面、屋頂、道路、窗戶及其他等七類。研究中亦加入了高度圖、梯度圖與邊緣圖等輔助資料,使具有高度變化的地物能被順利偵測。其中,高度圖與梯度圖來自多視角航照影像密集匹配所獲得的大量地表點雲,故我們亦將其與空載光達點雲比較,以驗證匹配點雲的可靠度與誤差等級。研究成果顯示整體分類精度可達81%,而Kappa指標為0.75,證明本研究所提出之分類方式具有相當高的正確性,尤其是傾斜航照部分地物高差移位現象相當嚴重,若未使用高度圖與梯度圖,將無法區分牆面、屋頂與道路。此外,本研究提出之分類方法亦可應用於垂直航照與窗戶之偵測上,此富含語意資訊的分類成果對於數碼城市的建立與三維地理資訊系統的應用皆有很大的幫助。

    With the evolution of three dimensional GIS (Geospatial Information Systems) and digital map, nowadays, cyber-city modeling becomes a major topic in related research. We can take in every city at a glance with the 3D views on the network platform and implement some spatial assessment through the cyber-city. Comparing to the 2D maps, 3D maps provide much more information and intuitive visual response. In recent years, with the development of image matching technique and camera system, cyber-city models can be reconstructed through the multi-view aerial image. In addition to use the vertical aerial image only, the oblique views provide both the top and side information of the surface objects. For this reason, the multi-view aerial images are often utilized in building modeling researches such as façade texturing and building model reconstruction. Moreover, we can also acquire amount surface points from those images with the dense image matching technique. Comparing to the aerial LiDAR points, this kind of point cloud is much cheaper and denser. In our study, we performed an object-based image classification rule set on multi-view aerial imagery in urban area to extract the semantic information of the cyber-city. The images are finally classified into Grass, Tree, Façade, Roof, Road, Window and Others classes with a hierarchical coarse to fine rule set. For classifying the surface object more correctly, we also utilized the photogrammetric point cloud which generated by the multi-view imagery to produce the auxiliary height information.
    Over the last decade, the object-based image analysis (OBIA) has substituted the pixel-based classification method gradually. With the multiresolution image segmentation algorithm, objects are produced by merging the pixels with shape and color homogeneity. The object contains more features such as texture or shape indices in identifying the target class that lead the classification result closer to the human interpretation result, whereas the pixel only with spectral information. In the classification, the image will separate into several parts at first, namely the “objects”, through image segmentation algorithm. Then, we defined a coarse to fine rule set to classify the objects hierarchically according to the spectrum, geometry and class-related features indices. The auxiliary feature layers which include the original image, “height map” and “gradient map” are applied for detecting the target class. Besides, we also add the beneficial “edge map” in segmentation layers. Considered that the “height map” and “gradient map” are come from the photogrammetric point cloud, we also verified their reliability and correctness when comparing to the ALS (Airborne Laser Scanning) point cloud. Our experiment result shows the overall accuracy can achieve 81% and the kappa index is 0.75 which proved that the proposed classification method has a high percent correctness, especially in separating the roof, road and façade from the severe relief displacement successfully. Moreover, the semantic classification result is significant for cyber-city modeling and 3D GIS applications.

    摘要 I Abstract III 致謝 V CONTENTS VI LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 1.1 Research Motivation 1 1.2 Research Objective 1 1.3 Cyber City Modeling 2 1.4 Oblique Aerial Imagery 4 1.5 Semantic Information Extraction 5 1.6 Object-Based Image Analysis (OBIA) 6 1.6.1 Image Segmentation 7 1.6.2 Feature Indices 7 1.7 Point Cloud Generation 9 1.7.1 Airborne Laser Scanning 9 1.7.2 Photogrammetric Point Cloud 10 1.8 Paper Structure 11 CHAPTER 2 EXPERIMENTAL MATERIAL 13 2.1 NCKU AMCIS System 14 2.1.1 Study Area 15 2.1.2 Ground Control Points Measurement 15 2.2 Generation of Photogrammetric Point Cloud 16 2.3 Feature Layers 17 2.3.1 Height Map 17 2.3.2 Gradient Map 22 2.4 Segmentation Layers 24 2.4.1 Edge Map 24 2.4.2 Enhanced Image 24 CHAPTER 3 METHODOLOGY 26 3.1 Workflow 26 3.2 Multi-resolution Image Segmentation 26 3.2.1 Image Layer Weights 26 3.2.2 Shape and Compactness 27 3.2.3 Scale 28 3.2.4 Multi-resolution Image Segmentation Region Grow 29 3.3 Object Features 29 3.3.1 Spectrum 29 3.3.2 Geometry 31 3.3.3 Class-related features 32 3.3.4 Features in Auxiliary Data 33 3.4 OAI Classification 33 3.4.1 Hierarchical Network 33 3.4.2 Rule Sets & Thresholds Definition 34 3.5 VAI Classification 36 3.5.1 Rule Sets 36 3.6 Window Detection 37 3.6.1 Flowchart 38 CHAPTER 4 EXPERIMENTAL RESULTS & ANALYSES 40 4.1 Photogrammetric Point Cloud 40 4.1.1 DSM Generation and Accuracy Analysis 40 4.1.2 Comparison with ALS point cloud 42 4.1.3 Height Map Generation 52 4.1.4 Gradient Map Generation 52 4.2 Classification Results 56 4.2.1 Visual Analysis 56 4.2.2 Accuracy Analysis 59 4.2.3 Consistency Analysis 62 4.2.4 Point Cloud Classification 63 4.2.5 Window Detection Result 64 CHAPTER 5 CONCLUSIONS & RECOMMENDATIONS 66 REFERENCES 68

    Addink, E. A., Van Coillie, F. M. B., de Jong, S. M., 2012. Introduction to the GEOBIA 2010 special issue: From pixels to geographic objects in remote sensing image analysis. International Journal of Applied Earth Observation and Geoinformation, 15, pp. 1–6.
    Baatz, M., Schäpe, M., 2000. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. Angewandte Geographische Informations-Verarbeitung XII, Beiträge zum AGIT-Symposium Salzburg 2000 (Karlsruhe: Herbert Wichmann Verlag), pp. 12–23.
    Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (1), pp. 2-16.
    Canny, J., 1986. A computational approach to edge detection. IEEE Trans. Pattern Analysis Machine Intelligence 8, pp. 679–714 .
    Chen, Y., Su, W., Li, J., Sun, Z., 2009. Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas. Advances in Space Research, 43(7), pp. 1101–1110.
    Cheng, L., Tong, L., Chen, Y., Zhang, W., Shan, J., Liu, Y., Li, M., 2013. Integration of LiDAR data and optical multi-view images for 3D reconstruction of building roofs. Optics and Lasers in Engineering, 51 (4), pp. 493–502.
    Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37 (1), 35–46.
    Davis, J. C., 2002. Statistics and data analysis in geology, Kansas Geological Survey. The University of Kansas, Kansas.
    Frueh, C. , Sammon, R., Zakhor, A., 2004. Automated texture mapping of 3d city models with oblique aerial imagery. 3DPVT '04 Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd International Symposium, pp. 396-403.
    Gerke, M., 2009. Dense matching in high resolution oblique airborne images. CMRT09: Object extraction for 3D city models, road databases and traffic monitoring: concepts, algorithms and evaluation, Paris, 3-4 September 2009. ISPRS, 2009. pp 77-82.
    Gerke, M., Nyaruhuma, A. P., 2009. Incorporating scene constraints into the triangulation of airborne oblique images. Presented at the ISPRS conference: High-Resolution Earth Imaging for Geospatial Information: ISPRS XXXVIII 1-4-7/WS, 2-5 June, 2009 Hannover, Germany: 6.
    Gerke. M., Kerle. N., 2011. Automatic structural seismic damage assessment with airborne oblique pictometry imagery. Photogrammetric Engineering and Remote Sensing, 77 (9), pp. 885-898.
    Gröger, G., Kolbe, T. H., Nagel, C., Häfele, K. H., 2012. OGC City Geography Markup Language (CityGML) Encoding Standard, Version 2.0.0. Open Geospatial Consortium, OGC Doc. No. 12–019.
    Gruen, A., 2012. Development And Status Of Image Matching In Photogrammetry. The Photogrammetric Record, 27(137), pp. 36–57.
    Gruen, A., Baltsavias, E. P., 1988. Geometrically constrained multiphoto matching. Photogrammetric Engineering & Remote Sensing, 54(5), pp. 633–641.
    Haala, N., Kada, M., 2010. An update on automatic 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (6), pp. 570–580.
    Haralick, R. M., Shanmugam K., Dinstein J., 1973. Textural features for image classification. IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp.610 -621.
    Kao, D. L., Kramer, M. G., Love, A. L., Dungan, J. L., Pang, A. T., 2005. Visualizing distributions from multi-return LiDAR data to understand forest structure. The Cartographic Journal, 42, No. 1, pp. 35–47.
    Kost, K., Loddenkemper, M., Petring, J., 1996. Airborne laserscanning, a new remote sensing method for mapping terrain. Third EARSeL Workshop on LiDAR remote sensing of land and sea, Tallinne, Estonia, 17-19 July 1997, pp. 89-96.
    LI, M., 1990. High-precision relative orientation using feature based matching techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 44, pp. 311-324.
    Lang, S., Albrecht, F., Blaschke, T., 2011. OBIA – Tutorial, Centre for Geoinformatics (Z_GIS), Paris-Lodron University Salzburg.
    Megyesi, Z., 2009. Dense Matching Methods for 3D Scene Reconstruction from Wide Baseline Images. PhD Dissertation, Computer and Automation Research Institute, Eötvös Loránd University, Budapest.
    Mishra, P., Ofek, E., Kimchi, G., 2008. Validation of vector data using oblique images. Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems, November 05-07, 2008, Irvine, California.
    Nyaruhuma, A. P., Gerke, M., Vosselman, G., 2010. Line matching in oblique airborne images to support automatic verification of building outlines, ASPRS 2010 Annual Conference.
    Panday, U. S., 2011. Fitting of parametric building models to oblique aerial images, Faculty of Geo-Information Science and Earth Observation, University of Twente.
    Sheng, Y., Gong, P., Biging, G.S., 2003. True orthoimage production for forested areas from large-scale aerial photographs. Photogrammetric Engineering and Remote Sensing, 69, pp. 259–266.
    Strecha, C., Tuytelaars, T., Van Gool, L., 2003. Dense matching of multiple wide-baseline views. Ninth IEEE International Conference on Computer Vision, 2 , pp. 1194-1201.
    Tola, E., Lepetit, V., Fua, P., 2010. DAISY: An efficient dense descriptor applied to wide-baseline stereo, IEEE Transactions On Pattern Analysis And Machine Intelligence, 32, No. 5, pp 815-830.
    Trimble. 2010. eCognition Developer 8.0.2 - Reference Book. Munchen,Germany: Trimble Germany GmbH.
    Vallet, J., Panissod , F., Strecha, C., Tracol M., 2011. Photogrammetric performance of an ultra light weight swinglet“UAV”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS ICWG I/V UAV-g (unmanned aerial vehicle in geomatics) conference, Zurich, Switzerland.
    Wang, L., Neumann, U., 2009. A robust approach for automatic registration of aerial images with untextured aerial LiDAR data. Computer Vision and Pattern Recognition, IEEE Conference on, pp. 2623 – 2630.
    Wang, M., Tseng, Y. H., 2011. Incremental segmentation of LiDAR point clouds with an octree-structured voxel space. The Photogrammetric Record, 26(133), pp. 32–57.
    Wolf, P. R., Dewitt, B. A., 2000. Elements of photogrammetry. McGraw-Hill, New York, USA.
    Xiao, J., Gerke, M. and Vosselman, G., 2012. Building extraction from oblique airborne imagery based on robust façade detection. ISPRS Journal of Photogrammetry and Remote Sensing, 68, pp. 56-68.
    Zebedin, L., Klaus, A., Gruber-Geymayer, B., Karner, K., 2006, Towards 3D map generation from digital aerial images. ISPRS Journal of Photogrammetry and Remote Sensing, 60 (6), pp. 413–427.
    Zhang, L., Gruen, A., 2006. Multi-image matching for DSM generation from IKONOS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 60 (3), pp. 195–211.

    下載圖示 校內:2013-10-01公開
    校外:2013-10-01公開
    QR CODE