簡易檢索 / 詳目顯示

研究生: 薛聖傑
Hsueh, Sheng-Chieh
論文名稱: 應用黃金正弦演算法於電網形成型變流器虛功率分配之研究
Application of Golden Sine Algorithm to Reactive Power Sharing of Grid-Forming Inverters
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 80
中文關鍵詞: 電網形成型變流器黃金正弦演算法自適應虛擬阻抗
外文關鍵詞: grid-forming inverters, golden sine algorithm, adaptive virtual impedance
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用黃金正弦演算法進行電網形成型變流器之積分控制增益的調整,以使三台電網形成型變流器於孤島運轉模式時之虛功率分配更為均勻化。本文所提演算法結合正弦函數之線性波動特性與黃金比例搜尋機制,兼具全域搜尋與區域優化能力,可有效提升最佳化參數之搜尋效率。本文模擬兩種情境進行測試,包括三台電網形成型變流器於孤島運轉模式時之正常運轉,以及其中一台電網形成型變流器故障跳脫之情況,然後針對上述情境,本文分析負載突增與卸載時之各台變流器功率分配情形,而為驗證所提方法之可行性,本文採用兩種控制方法進行比較,模擬結果顯示,黃金正弦演算法可求得積分控制增益之最佳值,於應用至自適應虛擬阻抗控制迴路時,可用於補償各變流器至責任分界點間線路阻抗差異,進而降低虛功率偏差之誤差絕對值之時間積分值,有助於變流器間之虛功率分配均勻化,並有效提升系統之韌性運轉能力。

    This study applies the golden sine algorithm (GSA) to optimize the integral control gain of grid-forming inverters, aiming to improve the reactive power sharing among three inverters operated in islanded mode. The proposed algorithm integrates the linear oscillatory characteristics of the sine function with the golden section search mechanism, achieving a balance between global exploration and local exploitation, thereby enhancing the efficiency of control parameter optimization. Two simulation scenarios are developed to evaluate system performance. One involves standard islanded operation of three grid-forming inverters, while the other includes a fault-induced disconnection of one inverter. In both scenarios, the system’s response to sudden load increases and load shedding is analyzed to assess reactive power sharing behavior. To validate the effectiveness of the proposed method, two control strategies are implemented for comparative analysis. Simulation results confirm that the proposed method efficiently optimizes the integral control gain, enabling the adaptive virtual impedance control loop to effectively mitigate line impedance mismatches between inverters and the point of common coupling. This compensation significantly reduces the integral time absolute error of reactive power deviation, thereby enhancing reactive power sharing uniformity among inverters and improving the overall system resilience.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 研究動機與文獻回顧 1 1-2 本文所提研究方法與步驟敘述 3 1-3 論文各章重點簡述 5 第二章 問題描述與電網形成型變流器控制架構設計 6 2-1 前言 6 2-2 虛擬阻抗於電網形成型變流器之應用 6 2-3 本文所提方法之示意圖 7 2-4 電網形成型變流器控制系統架構 9 2-4-1 實功率與虛功率計算模組 11 2-4-2 P-ω下垂控制與Q-V下垂控制 11 2-4-3 自適應虛擬阻抗控制迴路 13 2-4-4 電壓控制迴路與電流控制迴路 15 2-5 電網形成型變流器傳輸功率計算 17 2-6 應用黃金正弦演算法調整積分控制增益 20 2-6-1 建立目標函數 21 2-7 本章結論 22 第三章 黃金正弦演算法 23 3-1 前言 23 3-2 黃金正弦演算法之運算機制 23 3-2-1 黃金正弦演算法初始化 26 3-2-2 正弦波動與黃金比例搜尋機制 28 3-3 本章結論 35 第四章 研究模擬成果與分析 36 4-1 前言 36 4-2 電網形成型變流器運轉參數設計 36 4-3 族群數量設計 38 4-4 模擬結果測試及分析 40 4-4-1 模擬情境一:三台電網形成型變流器孤島運轉模式 41 4-4-2 模擬情境二:單台電網形成型變流器故障跳脫分析 49 4-5 本章結論 57 第五章 結論及未來研究方向 58 5-1 結論 58 5-2 未來研究方向 59 參考文獻 60

    [1] A. H. Jafariazad, S. A. Taher, Z. D. Arani, M. H. Karimi, and J. M. Guerrero, “Adaptive Supplementary Control of VSG Based on Virtual Impedance for Current Limiting in Grid-Connected and Islanded Microgrids,” IEEE Transactions on Smart Grid, vol. 15, no. 1, pp. 89-98, Jan. 2024.
    [2] A. S. Vijay, N. Parth, S. Doolla, and M. C. Chandorkar, “An Adaptive Virtual Impedance Control for Improving Power Sharing Among Inverters in Islanded AC Microgrids,” IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 2991-3003, Jul. 2021.
    [3] Y. Yang, J. Xu, C. Li, W. Zhang, Q. Wu, and M. Wen, “A New Virtual Inductance Control Method for Frequency Stabilization of Grid-Forming Virtual Synchronous Generators,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 441-451, Jan. 2023.
    [4] R. Rosso, X. Wang, M. Liserre, X. Lu, and S. Engelken, “Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends - A Review,” IEEE Open Journal of Industry Applications, vol. 2, pp. 93-109, Apr. 2021.
    [5] W. Zhou, N. Mohammed, and B. Bahrani, “Comprehensive Modeling, Analysis, and Comparison of State-Space and Admittance Models of PLL-Based Grid-Following Inverters Considering Different Outer Control Modes,” IEEE Access, vol. 10, pp. 30109-30146, Mar. 2022.
    [6] T. Liu, X. Wang, F. Liu, K. Xin, and Y. Liu, “Transient Stability Analysis for Grid-Forming Inverters Transitioning from Islanded to Grid-Connected Mode,” IEEE Open Journal of Power Electronics, vol. 3, pp. 419-432, Jul. 2022.
    [7] D. B. Rathnayake, M. Akrami, C. Phurailatpam, S. P. Me, S. Hadavi, and G. Jayasinghe, “Grid Forming Inverter Modeling, Control, and Applications,” IEEE Access, vol. 9, pp. 114781-114807, Aug. 2021.
    [8] Y. Li, Y. Gu, and T. C. Green, “Revisiting Grid-Forming and Grid-Following Inverters: A Duality Theory,” IEEE Transactions on Power Systems, vol. 37, no. 6, pp. 4541-4554, Nov. 2022.
    [9] X. Liang, C. Andalib-Bin-Karim, W. Li, M. Mitolo, and M. N. S. K. Shabbir, “Adaptive Virtual Impedance-Based Reactive Power Sharing in Virtual Synchronous Generator Controlled Microgrids,” IEEE Transactions on Industry Applications, vol. 57, no. 1, pp. 46-60, Feb. 2021.
    [10] W. Cao, M. Han, X. Zhang, W. Xie, G. D. Agundis-Tinajero, and J. M. Guerrero, “A Novel Power Sharing Scheme of Controlling Parallel-Operated Inverters in Islanded Microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5732-5746, Oct. 2021.
    [11] X. Liang, C. Andalib-Bin-Karim, W. Li, M. Mitolo, and M. N. S. K. Shabbir, “Adaptive Virtual Impedance-Based Reactive Power Sharing in Virtual Synchronous Generator Controlled Microgrids,” IEEE Transactions on Industry Applications, vol. 57, no. 1, pp. 46-60, Feb. 2021.
    [12] Y. Tao, Q. Liu, Y. Deng, X. Liu, and X. He, “Analysis and Mitigation of Inverter Output Impedance Impacts for Distributed Energy Resource Interface,” IEEE Transactions on Power Electronics, vol. 30, no. 7, pp. 3563-3576, Jul. 2015.
    [13] J. Zhang, Y. Jia, Z. Li, X. Ye, C. Yang, and D. Jiang, “Adaptive Virtual Impedance Control Strategy for Multiple Grid-forming Converters in Islanded Microgrid,” Asia Power and Electrical Technology Conference, Shanghai, China, pp. 599-604, Dec. 2023.
    [14] H. Mahmood, D. Michaelson, and J. Jiang, “Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances,” IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1605-1617, Mar. 2015.
    [15] Y. Zhu, F. Zhuo, F. Wang, B. Liu, R. Gou, and Y. Zhao, “A Virtual Impedance Optimization Method for Reactive Power Sharing in Networked Microgrid,” IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 2890-2904, Apr. 2016.
    [16] B. Wei, A. Marzàbal, R. Ruiz, J. M. Guerrero, and J. C. Vasquez, “DAVIC: A New Distributed Adaptive Virtual Impedance Control for Parallel-Connected Voltage Source Inverters in Modular UPS System,” IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5953-5968, Jun. 2019.
    [17] Z. Jin and X. Wang, “A DQ-Frame Asymmetrical Virtual Impedance Control for Enhancing Transient Stability of Grid-Forming Inverters,” IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 4535-4544, Apr. 2022.
    [18] M. Wang, K. Meng, L. Yu, L. Yuan, and Z. Liang, “Comparative Fault Ride Through Assessment between Grid-following and Grid-forming Control for Weak Grids Integration,” IEEE Global Conference on Computing, Power and Communication Technologies, New Delhi, India, pp. 1-6, Sept. 2022.
    [19] L. Zhang, H. Zheng, Q. Hu, B. Su, and L. Lyu, “An Adaptive Droop Control Strategy for Islanded Microgrid Based on Improved Particle Swarm Optimization,” IEEE Access, vol. 8, pp. 3579-3593, Dec. 2020.
    [20] X. Wu, C. Shen, and R. Iravani, “Feasible Range and Optimal Value of the Virtual Impedance for Droop-Based Control of Microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 3, pp. 1242-1251, May 2017.
    [21] J. Zhang, X. Wang, and L. Ma, “An Optimal Power Allocation Scheme of Microgrid Using Grey Wolf Optimizer,” IEEE Access, vol. 7, pp. 137608-137619, Sept. 2019.
    [22] Y. Guan, L. Meng, C. Li, J. C. Vasquez, and J. M. Guerrero, “A Dynamic Consensus Algorithm to Adjust Virtual Impedance Loops for Discharge Rate Balancing of AC Microgrid Energy Storage Units,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4847-4860, Sept. 2018.
    [23] J. Águila-León, C. D. Chiñas-Palacios, C. Vargas-Salgado, E. Hurtado-Perez, and E. X. M. García, “Optimal PID Parameters Tunning for a DC-DC Boost Converter: A Performance Comparative Using Grey Wolf Optimizer, Particle Swarm Optimization and Genetic Algorithms,” IEEE Conference on Technologies for Sustainability, Santa Ana, California, USA, pp. 1-6, April 2020.
    [24] National Grid ESO, “GC0163: GB Grid Forming (GBGF) - Removal of Virtual Impedance Restriction”, Draft Final SG Modification Report, July 2024.
    [25] X. Wang, Y. W. Li, F. Blaabjerg, and P. C. Loh, “Virtual-Impedance-Based Control for Voltage-Source and Current-Source Converters,” IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7019-7037, Dec. 2015.
    [26] Z. Qu, W. Younis, X. Liu, A. Khalique Junejo, S. Z. Almutairi, and P. Wang, “Optimized PID Controller for Load Frequency Control in Multi-Source and Dual-Area Power Systems Using PSO and GA Algorithms,” IEEE Access, vol. 12, pp. 186658-186678, Aug. 2024.
    [27] R. An, Z. Liu, J. Liu, and S. Wang, “A Communication-independent Reactive Power Sharing Scheme with Adaptive Virtual Impedance for Parallel Connected Inverters,” International Power Electronics Conference, Niigata, Japan, pp. 3692-3697, May 2018.
    [28] R. An, Z. Liu, and J. Liu, “Successive-Approximation-Based Virtual Impedance Tuning Method for Accurate Reactive Power Sharing in Islanded Microgrids,” IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 87-102, Jan. 2021.
    [29] J. M. Guerrero, Luis Garcia de Vicuna, J. Matas, M. Castilla, and J. Miret, “Output Impedance Design of Parallel-Connected UPS Inverters with Wireless Load-Sharing Control,” IEEE Transactions on Industrial Electronics, vol. 52, no. 4, pp. 1126-1135, Aug. 2005.
    [30] H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J. M. Guerrero, “Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 200-215, Jan. 2016.
    [31] Y. Yang et al., “A New Virtual Inductance Control Method for Frequency Stabilization of Grid-Forming Virtual Synchronous Generators,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 441-451, Jan. 2023.
    [32] R. Razi, H. Iman-Eini, M. Hamzeh, and S. Bacha, “A Novel Extended Impedance-Power Droop for Accurate Active and Reactive Power Sharing in a Multi-Bus Microgrid with Complex Impedances,” IEEE Transactions on Smart Grid, vol. 11, no. 5, pp. 3795-3804, Sept. 2020.
    [33] E. Tanyildizi and G. Demir, “Golden Sine Algorithm: A novel math-inspired algorithm,” Advances in Electrical and Computer Engineering, vol. 17, no. 2, pp. 71-78, May 2017.
    [34] National Grid Electricity Transmission, Guidance Notes – Power Park Modules, Issue 3, Sept. 2012.
    [35] 台灣電力公司「再生能源發電系統併聯技術要點」,2023年8月
    [36] J. He, and Y. W. Li, “Analysis, Design, and Implementation of Virtual Impedance for Power Electronics Interfaced Distributed Generation,” IEEE Transactions on Industry Applications, vol. 47, no. 6, pp. 2525-2538, Dec. 2011.
    [37] B. Fan, Q. Li, W. Wang, G. Yao, H. Ma, and X. Zeng, “A Novel Droop Control Strategy of Reactive Power Sharing Based on Adaptive Virtual Impedance in Microgrids,” IEEE Transactions on Industrial Electronics, vol. 69, no. 11, pp. 11335-11347, Nov. 2022.

    無法下載圖示 校內:2030-07-11公開
    校外:2030-07-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE