| 研究生: |
周智豪 Chou, Chih-Hao |
|---|---|
| 論文名稱: |
(Mg0.95Zn0.05)TiO3-(Na1/2Nd1/2)TiO3介電陶瓷材料之研製及新型Butterworth濾波器之研發 Development of the (Mg0.95Zn0.05)TiO3 Dielectric Ceramics and It's Application on a novel Butterworth Filter |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 濾波器 、陶瓷 |
| 外文關鍵詞: | ceramic, filter |
| 相關次數: | 點閱:93 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文開發0.82(Mg0.95Zn0.05)TiO3-0.18(Na1/2Nd1/2)TiO3陶瓷材料之製作,探討該材料的微結構及應用於通訊元件時的微波介電特性,然後再探討該材料應用於微波元件之製作及結果。在0.82(Mg0.95Zn0.05)TiO3-0.18(Na1/2Nd1/2)TiO3陶瓷材料系統的研究上,發現其在1300°C燒結時,頻率溫度飄移係數可趨近於零,而介電常數約為25,Qxf最高可達8萬多,比MgTiO3-(Na1/2Nd1/2)TiO3系統的Qxf高出約一點五倍。在微波元件之製作上,本論文提出一種新型的帶通濾波器,主要是利用Butterworth一階低通濾波器及一個開路殘段,經轉換,可獲致二階帶通濾波器之效果,其中心頻率頻段為2.4GHz,頻寬約為10%,此濾波分別製做在FR4、Al2O3及自製研發的0.82(Mg0.95Zn0.05)TiO3-0.18(Na1/2Nd1/2)TiO3基板上,最佳之S21可達0.7dB。
In order to develop new dielectric material for microwave devices, we studies the fabrication and properties of 0.82(Mg0.95Zn0.05)TiO3-0.18(Na1/2Nd1/2)TiO3. The experimental results show that at the sintering temperature of 1300oC, the frequency shift temperature of the ceramic material can be made almost zero with relative dielectric constant of 25 and Qxf value of more than 80,000, which is 1.5 times of that of the material MgTiO3-(Na1/2Nd1/2)TiO3. We also proposed a novel band-pass filter which is transformed from a Butterworth low pass filter of order one by inserting an open stub. The filters, fabricated on the substrates of FR4, Al2O3 and 0.82(Mg0.95Zn0.05)TiO3-0.18(Na1/2Nd1/2)TiO3, are equivalent to a band-pass filter of order two on the specifications of center frequency of 2.4GHz, bandwidth of 10% and best S21 value as high as 0.7dB.
[1] W. R. Snyder and C. L. Bragaw, Achievement in Radio: U.S. Government Printing Office, 1986.
[2] R. D. Richtmyer, "Dielectric Resonators," Japanese Journal of Applied Physics, vol. 10, pp. 391-398, 1939.
[3] S. B. Cohn, "Microwave Bandpass Filters Containing High-Q Dielectric Resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 16, pp. 218-227, 1968.
[4] 吳朗, 介電陶瓷: 全欣, 1996.
[5] K. Matsumoto, T. Hiuga, K. Takada, and H. Ichimura, "Ba (Mg1/3Ta2/3O3) Ceramics with Ultra-Low Loss at Microwave Frequencies," presented at IEEE, 1986.
[6] Y. M. Chiang, B. Ⅲ, and D. P, Physical Ceramics : Principles for Ceramic Science and Engineering, vol. 34: Wiley, 1996.
[7] W. J. Huppmann and G. Petzow, The Elementary Mechanisms of Liquid Sintering: Plenum Press, 1979.
[8] J.-H. Jean and J.-I. Shen, "Densification inhibitor of low-dielectric binary glass composite," Journal of Materials Science, vol. 31, pp. 4289 - 4295 1996.
[9] G.-D. Zhan, M. Mitomo, Y. Ikuhara, and T. Sakuma, "Effects of Microstructure on Superplastic Behavior and Deformation Mechanisms in β-Silicon Nitride Ceramics," Journal of the American Ceramic Society, vol. 83, pp. 3179, 2000.
[10] F. G. R. Gimblett, J. J. Freeman, and K. S. W. Sing, Element-containing carbon fibres: recent USSR/Eastern European research in fibre technology, vol. 24: Springer Netherlands, 1989.
[11] M. F. d. Souzaa and D. P. F. d. Souzab, "Glass Phase Expelling During Liquid Phase Sintering of YSZ," Materials Research, vol. 1, pp. 53-59, 1998.
[12] J.-H. JEAN and T. K. GUPTA, "Liquid-phase sintering in the glass-cordierite system," JOURNAL OF MATERIALS SCIENCE, vol. 27, pp. 1575-1584, 1992.
[13] D. K. Cheng, Field and Wave Electromangnetic, 2 ed: Addison-Wesley Pub Co, 1989.
[14] D. Kajfez, A. W. Glisson, and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 32, pp. 1609-1616, 1984.
[15] P. Wheless and D. Kajfez, "The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators," 1985.
[16] J. E. Lebaric and D. Kajfez, "Analysis of dielectric resonator cavities using the finite integration technique," Microwave Theory and Techniques, IEEE Transactions on, vol. 37, pp. 1740-1748, 1989.
[17] G. Burns, Solid State Physics: Academic Press, Inc., 1989.
[18] K. WAKINO, M. MURATA, and H. TAMURA, "Far Infrared Reflection Spectra of Ba(Zn,Ta)O3-BaZrO3 Dielectric Resonator Material," Journal of the American Ceramic Society, vol. 69, pp. 34, 1986.
[19] W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," Microwave Theory and Techniques, IEEE Transactions on, vol. 18, pp. 476-485, 1970.
[20] L. A. Trinogga, G. Kaizhou, and I. C. Hunter, Practical Microstrip Circuit Design: Ellis Horwood Ltd, 1991.
[21] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip Lines and Slotlines. Boston: Artech House, 1996.
[22] E. Hammerstad and O. Jensen, "Accurate Models for Microstrip Computer-Aided Design," 1980.
[23] E. Hammerstad and F. Bekkadal, A Microstrip Handbook: ELAB-report, 1975.
[24] D. M. Pozar, Microwave Engineering: Assison-Wesley, 1998.
[25] E. J. Denlinger, "Losses of Microstrip Lines," Microwave Theory and Techniques, IEEE Transactions on, vol. 28, pp. 513-522, 1980.
[26] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in Microstrip," Microwave Theory and Techniques, IEEE Transactions on, vol. 16, pp. 342-350, 1968.
[27] 張盛富 and 戴明鳳, 無線通信之射頻被動電路設計: 全華科技, 1997.
[28] T. C. Edwards, Foundations for microstrip circuit design: Wiley, 1991.
[29] B. Easter, "The Equivalent Circuit of Some Microstrip Discontinuities," Microwave Theory and Techniques, IEEE Transactions on, vol. 23, pp. 655-660, 1975.
[30] N. R. Strader, R. L. Geiger, and P. E. Allen, VLSI design techniques for analog and digital circuits: McGraw-Hill, 1990.
[31] J. S. Wong, "Microstrip Tapped-Line Filter Design," Microwave Theory and Techniques, IEEE Transactions on, vol. 27, pp. 44-50, 1979.
[32] M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Springer, 2000.
[33] L. Jae-Ryong, C. Jeong-Hoon, and Y. Sang-Won, "New compact bandpass filter using microstrip λ/4 resonators with open stub inverter," Microwave and Guided Wave Letters, IEEE [see also IEEE Microwave and Wireless Components Letters], vol. 10, pp. 526-527, 2000.
[34] Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," Microwave Theory and Techniques, IEEE Transactions on, vol. 33, pp. 586-592, 1985.
[35] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," Microwave Theory and Techniques, IEEE Transactions on, vol. 8, pp. 402-410, 1960.
[36] Y. Kobayashi and S. Tanaka, "Resonant Modes of a Dielectric Rod Resonator Short-Circuited at Both Ends by Parallel Conducting Plates," Microwave Theory and Techniques, IEEE Transactions on, vol. 28, pp. 1077-1085, 1980.
[37] 劉士生, "(Mg0.95Zn0.05)TiO3 介電陶瓷之微波特性及其應用," 國立成功大學電機研究所, 2003.
[38] H. Takakashi, Y. Baba, K. Ezaki, Y. Okamoto, K. Shibata, K. Kuroki, and A. Nakano, "Delectric Characteristics of ( )TiO3 Ceramics at Microwave Frequencies," Japanese Journal of Applied Physics, vol. 30, pp. 2339-2342, 1991.
[39] D.-H. KIM, S.-K. LIM, and C. AN, "Microwave dielectric properties of xMgTiO3-(1-x)(Na1/2Ln1/2)TiO3 ceramics," JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, vol. 10, pp. 673-676, 1999.