簡易檢索 / 詳目顯示

研究生: 周智豪
Chou, Chih-Hao
論文名稱: (Mg0.95Zn0.05)TiO3-(Na1/2Nd1/2)TiO3介電陶瓷材料之研製及新型Butterworth濾波器之研發
Development of the (Mg0.95Zn0.05)TiO3 Dielectric Ceramics and It's Application on a novel Butterworth Filter
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 93
中文關鍵詞: 濾波器陶瓷
外文關鍵詞: ceramic, filter
相關次數: 點閱:93下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文開發0.82(Mg0.95Zn0.05)TiO3-0.18(Na1/2Nd1/2)TiO3陶瓷材料之製作,探討該材料的微結構及應用於通訊元件時的微波介電特性,然後再探討該材料應用於微波元件之製作及結果。在0.82(Mg0.95Zn0.05)TiO3-0.18(Na1/2Nd1/2)TiO3陶瓷材料系統的研究上,發現其在1300°C燒結時,頻率溫度飄移係數可趨近於零,而介電常數約為25,Qxf最高可達8萬多,比MgTiO3-(Na1/2Nd1/2)TiO3系統的Qxf高出約一點五倍。在微波元件之製作上,本論文提出一種新型的帶通濾波器,主要是利用Butterworth一階低通濾波器及一個開路殘段,經轉換,可獲致二階帶通濾波器之效果,其中心頻率頻段為2.4GHz,頻寬約為10%,此濾波分別製做在FR4、Al2O3及自製研發的0.82(Mg0.95Zn0.05)TiO3-0.18(Na1/2Nd1/2)TiO3基板上,最佳之S21可達0.7dB。

    In order to develop new dielectric material for microwave devices, we studies the fabrication and properties of 0.82(Mg0.95Zn0.05)TiO3-0.18(Na1/2Nd1/2)TiO3. The experimental results show that at the sintering temperature of 1300oC, the frequency shift temperature of the ceramic material can be made almost zero with relative dielectric constant of 25 and Qxf value of more than 80,000, which is 1.5 times of that of the material MgTiO3-(Na1/2Nd1/2)TiO3. We also proposed a novel band-pass filter which is transformed from a Butterworth low pass filter of order one by inserting an open stub. The filters, fabricated on the substrates of FR4, Al2O3 and 0.82(Mg0.95Zn0.05)TiO3-0.18(Na1/2Nd1/2)TiO3, are equivalent to a band-pass filter of order two on the specifications of center frequency of 2.4GHz, bandwidth of 10% and best S21 value as high as 0.7dB.

    目錄 摘要 VI ABSTRACT VII 目錄 IX 表目錄 XIV 圖目錄 XV 第一章 序論 1 第二章 介電與燒結原理 3 2-1. 介電原理 3 2-2. 鈦鐵礦(ILMENITE)結構[4] 4 2-3. 燒結原理 6 2-3-1. 再結晶與晶粒成長 6 2-3-2. 燒結理論 7 2-3-3. 液相燒結(Liquid Phase Sintering)[8] 8 2-3-4. 晶粒成長(Grain growth) 9 2-4. 介電共振器原理 10 2-5.量測原理 13 2-5-1. 品質因數(Q) 16 2-5-2. 共振頻率之溫度係數( ) 18 第三章 濾波器設定 20 3-1. 濾波器設定流程 20 3-2. 微帶線原理 20 3-2-1.微帶線傳輸型態 21 3-2-2. 微帶線各項參數公式 22 3-2-3. 微帶線的不連續效應 27 3-3. 濾波器規格之介紹 30 3-3-1. Butterworth低通濾波器數學式 31 3-3-2. Butterworth低通濾波器原型 32 3-3-3. 頻率之縮放 34 3-4. 饋入點之設定 36 3-4-1. 饋入公式推導 36 3-4-2. 饋入之U型濾波器 38 3-5.SIR步階阻抗轉換器 40 3-5-1 基本型之步階阻抗轉換器 41 3-5-2.變形之SIR步階阻抗轉換器 44 第四章 實驗程序與量測方法 47 4-1.起始原料 47 4-2. 微波介電材料之製備 48 4-2-1. 粉末備製 48 4-2-2. 陶瓷體備製 48 4-3. 特性分析與量測 51 4-3-1. 相鑑定 51 4-3-2. 微結構分析 51 4-3-3. 化學成分分析 52 4-3-4. 密度之量測 52 4-3-5. 微波特性之量測 53 4-4. 濾波器之製作與量測 61 4-4-1. 濾波器規格 61 4-4-2. 基板參數 63 4-4-3. 濾波器實作 65 4-4-4. 濾波器量測 66 第五章 實驗結果與討論 67 5-1. 文獻參考 67 5-2. 材料探討 68 5-2-1. x(Mg0.95Zn0.05)TiO3-(1-x)(Na1/2Nd1/2)TiO3系統 68 5-2-2. 摻雜V2O5之特性探討 75 5-3.濾波器的響應 84 5-3-1.FR4基板 84 5-3-2.Al2O3基板 85 5-3-3.82MZTNNT自製基板基板 87 5-3-4. 不同基板的濾波器特性比較 88 第六章 結論 90 參考文獻 91 表目錄 表 4-1起始粉末的純度和品牌 47 表4-2 X光繞射分析儀操作條件 51 表4-3微帶線參數 62 表5-1 文獻探討 67 表5-2.濾波器以FR4為基板的特性表 85 表5-3.濾波器以AL2O3為基板的特性表 86 表5-4.濾波器以82MZTNNT為基板的特性表 88 圖目錄 圖2-1. 結構示意圖 5 圖2-2.ABO3 化合物與離子半徑的關係圖。 5 圖2-3.電磁波由介質1(Ε1,Μ1)入射到介質2(Ε2,Μ2) 10 圖2-4.電磁波發生全反射之情形 11 圖2-5.(A)圓柱型DR之TE01Δ MODE電場分佈圖。(B)圓柱型DR之TE01Δ MODE磁場分佈圖。(C)圓柱型DR之TM01Δ MODE電場分佈圖。 12 圖2-6 圓柱型DR中各種MODE之外部與內部功率傳輸比 13 圖3-1.設計流程 20 圖3-2.(A)微帶線外觀 (B)微帶線之電場與磁場分佈 21 圖3-3.微帶線開路端效應 (A) 微帶線開路端圖(B)等效邊緣電容的等效電路圖(C)等效延伸傳輸線 29 圖3-4.直角彎折效應的結構圖與等效電路圖(A)直角彎折結構圖 (B)等效電路圖 30 圖3-5.(A) BUTTERWORTH FILTER (B) CHEBYSHEV FILTER(C)ELLIPTIC FUNCTION FILTER 31 圖3-6.N=1時的低通濾波器原型 34 圖3-7.MATLAB之損耗頻譜圖 35 圖3-8.原型電路模擬圖 35 圖3-9.四分之ㄧ波長傳輸線 36 圖3-10.頻寬之關係圖 39 圖3-11.(A)傳輸線電路圖 (B)U型濾波器之佈線圖 40 圖3-12.U形濾波器之S參數頻譜圖 40 圖3-13.四分之ㄧ波長步階阻抗轉換器 41 圖3-14.饋入長度與電器長度縮短比 42 圖3-15.變形之SIR (A)四分之ㄧ波長電路圖 (B)結構圖 44 圖3-16.變形之SIR頻譜圖 45 圖3-17.1/4波長開路殘斷示意圖:(A)結構圖(B)S參數頻譜圖 46 圖4-1 實驗流程圖 50 圖4-2 COURTNEY HOLD基本架構 53 圖4-3 量測用模具組 54 圖4-4 測量介電常數系統圖 55 圖4-5 測量Q值系統圖 55 圖4-6 判別TE MODE 和TM MODE之方法(A)TE MODE 耦合量小(耦合線圈垂直)(B)TM MODE 耦合量大(耦合線圈水平)(C)鑑別共振模式的P副指標: 56 圖4-7 鑑別P值之方法 57 圖4-8.濾波器之電路佈局 62 圖4-9.FR4基板之HFSS模擬圖 63 圖4-10.ALO3基板之HFSS模擬圖 64 圖4-11.0.82(MG0.95ZN0.05)TIO3-0.18(NA1/2ND1/2)TIO3基板之HFSS模擬圖 65 圖5-1.MZTNNT系統的 值與燒結溫度持溫四個小時之關係圖 68 圖5-2.82MZTNNT的 值在不同溫度之比較 69 圖5-3.82MZTNNT陶瓷系統在不同燒結溫度下的XRD分析 )NA1/2ND1/2TIO3 ( )MGTIO3 ( )MGTI2O5 70 圖5-4.MZTNNT不同摻雜比例其介電常數與不同溫度之比較 71 圖5-5.MZT-NNT系統的密度與燒結溫度持溫四個小時的關係圖 71 圖5-6.MZT-NNT系統的QXF與燒結溫度持溫四個小時的關係圖 72 圖5-7.MZT之EDS分析圖 72 圖5-8.NNT之EDS分析圖 73 圖5-8.0.82MZT-0.18NNT之SEM圖,其燒結溫度如下(A)1250°C (B)1275°C (C)1300°C (D)1325°C (E)1350°C (F)1375°C (G)1400°C 74 圖5-9.82MZTNNT陶瓷系統摻雜1WT%V2O5在不同燒結溫度下的XRD分析( )NA1/2ND1/2TIO3 ( )MGTIO3 ( )MGTI2O5 76 圖5-10.82MZTNNT陶瓷系統摻雜2WT%V2O5在不同燒結溫度下的XRD分析( )NA1/2ND1/2TIO3 ( )MGTIO3 ( )MGTI2O5 76 圖5-11.82MZTNNT陶瓷系統摻雜4WT%V2O5在不同燒結溫度下的XRD分析( )NA1/2ND1/2TIO3 ( )MGTIO3 ( )MGTI2O5 77 圖5-12 1摻雜介電常值與溫度關係圖 78 圖5-13.摻雜QXF值與溫度關係圖 79 圖5-14.溫度飄移係數與溫度關係圖 79 圖5-15.摻雜密度與溫度關係圖 80 圖5-16 0.82MZT-0.18NNT摻雜1WT%V2O5之SEM圖,其燒結溫度如下(A)1175°C (B)1200°C (C)1225°C (D)1250°C (E)1275°C (F)1300°C 82 圖5-17 0.82MZT-0.18NNT摻雜2WT%V2O5之SEM圖,其燒結溫度如下(A)1175°C (B)1200°C (C)1225°C (D)1250°C (E)1275°C (F)1300°C 83 圖5-18.0.82MZT-0.18NNT摻雜4WT%V2O5之SEM圖,其燒結溫度如下(A)1175°C (B)1200°C (C)1225°C (D)1250°C (E)1275°C (F)1300°C 84 圖5-19.FR4的電路圖(A)模擬電路(B)實做電路 85 圖5-20.FR4實作量測圖 85 圖5-21.AL2O3的電路圖(A)模擬電路(B)實做電路 86 圖5-22.AL2O3的實作量測圖 86 圖5-23 自製基版的電路圖(A)模擬電路(B)實做電路 87 圖5-24.自製基版實做量測圖 88

    [1] W. R. Snyder and C. L. Bragaw, Achievement in Radio: U.S. Government Printing Office, 1986.
    [2] R. D. Richtmyer, "Dielectric Resonators," Japanese Journal of Applied Physics, vol. 10, pp. 391-398, 1939.
    [3] S. B. Cohn, "Microwave Bandpass Filters Containing High-Q Dielectric Resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 16, pp. 218-227, 1968.
    [4] 吳朗, 介電陶瓷: 全欣, 1996.
    [5] K. Matsumoto, T. Hiuga, K. Takada, and H. Ichimura, "Ba (Mg1/3Ta2/3O3) Ceramics with Ultra-Low Loss at Microwave Frequencies," presented at IEEE, 1986.
    [6] Y. M. Chiang, B. Ⅲ, and D. P, Physical Ceramics : Principles for Ceramic Science and Engineering, vol. 34: Wiley, 1996.
    [7] W. J. Huppmann and G. Petzow, The Elementary Mechanisms of Liquid Sintering: Plenum Press, 1979.
    [8] J.-H. Jean and J.-I. Shen, "Densification inhibitor of low-dielectric binary glass composite," Journal of Materials Science, vol. 31, pp. 4289 - 4295 1996.
    [9] G.-D. Zhan, M. Mitomo, Y. Ikuhara, and T. Sakuma, "Effects of Microstructure on Superplastic Behavior and Deformation Mechanisms in β-Silicon Nitride Ceramics," Journal of the American Ceramic Society, vol. 83, pp. 3179, 2000.
    [10] F. G. R. Gimblett, J. J. Freeman, and K. S. W. Sing, Element-containing carbon fibres: recent USSR/Eastern European research in fibre technology, vol. 24: Springer Netherlands, 1989.
    [11] M. F. d. Souzaa and D. P. F. d. Souzab, "Glass Phase Expelling During Liquid Phase Sintering of YSZ," Materials Research, vol. 1, pp. 53-59, 1998.
    [12] J.-H. JEAN and T. K. GUPTA, "Liquid-phase sintering in the glass-cordierite system," JOURNAL OF MATERIALS SCIENCE, vol. 27, pp. 1575-1584, 1992.
    [13] D. K. Cheng, Field and Wave Electromangnetic, 2 ed: Addison-Wesley Pub Co, 1989.
    [14] D. Kajfez, A. W. Glisson, and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 32, pp. 1609-1616, 1984.
    [15] P. Wheless and D. Kajfez, "The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators," 1985.
    [16] J. E. Lebaric and D. Kajfez, "Analysis of dielectric resonator cavities using the finite integration technique," Microwave Theory and Techniques, IEEE Transactions on, vol. 37, pp. 1740-1748, 1989.
    [17] G. Burns, Solid State Physics: Academic Press, Inc., 1989.
    [18] K. WAKINO, M. MURATA, and H. TAMURA, "Far Infrared Reflection Spectra of Ba(Zn,Ta)O3-BaZrO3 Dielectric Resonator Material," Journal of the American Ceramic Society, vol. 69, pp. 34, 1986.
    [19] W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," Microwave Theory and Techniques, IEEE Transactions on, vol. 18, pp. 476-485, 1970.
    [20] L. A. Trinogga, G. Kaizhou, and I. C. Hunter, Practical Microstrip Circuit Design: Ellis Horwood Ltd, 1991.
    [21] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip Lines and Slotlines. Boston: Artech House, 1996.
    [22] E. Hammerstad and O. Jensen, "Accurate Models for Microstrip Computer-Aided Design," 1980.
    [23] E. Hammerstad and F. Bekkadal, A Microstrip Handbook: ELAB-report, 1975.
    [24] D. M. Pozar, Microwave Engineering: Assison-Wesley, 1998.
    [25] E. J. Denlinger, "Losses of Microstrip Lines," Microwave Theory and Techniques, IEEE Transactions on, vol. 28, pp. 513-522, 1980.
    [26] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in Microstrip," Microwave Theory and Techniques, IEEE Transactions on, vol. 16, pp. 342-350, 1968.
    [27] 張盛富 and 戴明鳳, 無線通信之射頻被動電路設計: 全華科技, 1997.
    [28] T. C. Edwards, Foundations for microstrip circuit design: Wiley, 1991.
    [29] B. Easter, "The Equivalent Circuit of Some Microstrip Discontinuities," Microwave Theory and Techniques, IEEE Transactions on, vol. 23, pp. 655-660, 1975.
    [30] N. R. Strader, R. L. Geiger, and P. E. Allen, VLSI design techniques for analog and digital circuits: McGraw-Hill, 1990.
    [31] J. S. Wong, "Microstrip Tapped-Line Filter Design," Microwave Theory and Techniques, IEEE Transactions on, vol. 27, pp. 44-50, 1979.
    [32] M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Springer, 2000.
    [33] L. Jae-Ryong, C. Jeong-Hoon, and Y. Sang-Won, "New compact bandpass filter using microstrip λ/4 resonators with open stub inverter," Microwave and Guided Wave Letters, IEEE [see also IEEE Microwave and Wireless Components Letters], vol. 10, pp. 526-527, 2000.
    [34] Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," Microwave Theory and Techniques, IEEE Transactions on, vol. 33, pp. 586-592, 1985.
    [35] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," Microwave Theory and Techniques, IEEE Transactions on, vol. 8, pp. 402-410, 1960.
    [36] Y. Kobayashi and S. Tanaka, "Resonant Modes of a Dielectric Rod Resonator Short-Circuited at Both Ends by Parallel Conducting Plates," Microwave Theory and Techniques, IEEE Transactions on, vol. 28, pp. 1077-1085, 1980.
    [37] 劉士生, "(Mg0.95Zn0.05)TiO3 介電陶瓷之微波特性及其應用," 國立成功大學電機研究所, 2003.
    [38] H. Takakashi, Y. Baba, K. Ezaki, Y. Okamoto, K. Shibata, K. Kuroki, and A. Nakano, "Delectric Characteristics of ( )TiO3 Ceramics at Microwave Frequencies," Japanese Journal of Applied Physics, vol. 30, pp. 2339-2342, 1991.
    [39] D.-H. KIM, S.-K. LIM, and C. AN, "Microwave dielectric properties of xMgTiO3-(1-x)(Na1/2Ln1/2)TiO3 ceramics," JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, vol. 10, pp. 673-676, 1999.

    下載圖示 校內:2007-07-07公開
    校外:2007-07-07公開
    QR CODE