| 研究生: |
張棠貴 Chang, Tang-Kuei |
|---|---|
| 論文名稱: |
電化學合成聚(2,5-二甲氧基苯胺)及其白金複合電極之特性與應用研究 Studies on the application of electrosynthesized poly(2,5-dimethoxyaniline) and its platinum composite electrodes |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 甲醇感測 、甲醇氧化 、維生素C 、白金/聚(2-5-二甲氧基苯胺)複合物 、電化學聚合 |
| 外文關鍵詞: | Methanol sensing, Methanol oxidation, Platinum/poly(2-5-dimethoxyaniline) composite, Electropolymerization, Ascorbic acid |
| 相關次數: | 點閱:158 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將研究分為三大部分,皆對於電化學聚合法合成的聚(2,5-二甲氧基苯胺)及其白金複合電極之應用作研究探討。在此選擇探討此電極應用於維生素C之電催化和甲醇氧化及其濃度感測等三大課題,分別敘述如下:
論文第一部份是以電化學法製備聚(2,5-二甲氧基苯胺)電極,透過循環伏安法和光譜電化學分析得知聚(2,5-二甲氧基苯胺)在中性液下的電化學活性優於聚苯胺。聚(2,5-二甲氧基苯胺)的電催化活性可以由維生素C的氧化加以證實,和聚苯胺相比,由於聚(2,5-二甲氧基苯胺)上的推電子甲氧基提升了電催化活性,因此,使得維生素C的氧化電流提高以及維生素C氧化的起始電位變小。
論文第二部份是將電化學法製備的白金/聚(2,5-二甲氧基苯胺)電極應用於甲醇濃度感測行為的研究。材料和電化學分析方面,利用掃描式電子顯微鏡和能量分散光譜儀觀察白金在聚(2,5-二甲氧基苯胺)結構的分散情況及白金元素分析;由傅立葉紅外線光譜和開環電位實驗證實白金和聚(2,5-二甲氧基苯胺)上的氮,兩者間有作用力存在,因此影響聚(2,5-二甲氧基苯胺)的本質狀態。由光譜法和電位法研究發現,當甲醇分子吸附在白金/聚(2,5-二甲氧基苯胺)電極上,會改變原本白金和聚(2,5-二甲氧基苯胺)間的作用力,進而再次影響聚(2,5-二甲氧基苯胺)的狀態。此外,透過模式的建立和設計,將白金/聚(2,5-二甲氧基苯胺)電極應用於不同濃度的甲醇偵測。
論文第三部份是將2,5-二甲氧基苯胺及2,5-二胺基苯磺酸兩種單體利用電化學法聚合出具交聯結構的共聚物—聚(2,5-二甲氧基苯胺/2,5-二胺基苯磺酸);交聯結構的共聚物之材料分析藉由掃描式電子顯微鏡、化學分析電子光譜和熱重分析加以探討。對於白金的沉積,具交聯結構的共聚物提供更多和更深的成核位置讓白金成長,從二次離子質譜儀分析可以得到驗證。此外,共聚物的磺酸根基團將有助於白金沉積。白金/共聚物複合電極對於甲醇的催化性和穩定性也比白金/聚(2,5-二甲氧基苯胺)佳。
The main purpose of this dissertation is to study the application of electrosynthesized poly(2,5-dimethoxyaniline) and its platinum composite electrodes, which is divided by three parts including electrocatalytic oxidation of ascorbic acid (AA), methanol sensing, and oxidation. Following are the brief descriptions of each part.
Poly(2,5-dimethoxyaniline) (PDMA) films were choronoamperometrically deposited on indium-tin oxide (ITO) electrodes. PDMA films exhibit high electroactivity in the neutral solution through the examination of cyclic voltammetry and in-situ UV–vis adsorption spectra. The electroactivity is evidenced by anodic oxidation of ascorbic acid (AA). The larger anodic current and the smaller onset potential occur on PDMA films for anodic oxidation of AA relative to PANI films. This is because two electron donating groups (–OCH3) on PDMA significantly enhance the electrocatalytic activity.
The behavior of methanol adsorption on platinum/poly(2,5-dimethoxyaniline) (Pt/PDMA) composite is investigated using UV–vis spectroscopy and open circuit potential (OCP). The results of scanning electron microscopy and energy dispersive spectroscopy are used to verify the uniform dispersion of Pt in PDMA. The Fourier transform infrared spectra and OCP results revealed that Pt particles interact with PDMA through the electron-rich nitrogen sites, influencing the oxidation state of PDMA. A model is proposed for the methanol adsorption on Pt particles which changes the interaction between Pt and PDMA. With the proposed model, methanol concentration can be discerned using potentiometric measurements. The results of this study can be applied to methanol sensors for direct methanol fuel cells.
Cross-linking structural copolymer, poly(2,5-dimethoxyaniline-co- 2,5-diaminobenzenesulphonic acid) was synthesized by electrochemical deposition of two monomer, 2,5-dimethoxyaniline, DMA and 2,5-diaminobenzenesulfonic acid, DABSA. The cross-linking structure of copolymer was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetric techniques. Copolymer with cross-linking structure provides more and deeper nucleation sites for the deposition of platinum (Pt) than homopolymer via electrochemical method, being certified by secondary ion mass spectrometer. Meanwhile, the existence of the –SO3H group in copolymer might also help the electrodeposition of Pt. Pt/copolymer nanocomposite film demonstrates better activity and stability toward methanol oxidation than Pt/PDMA.
1. A. G. MacDiarmid, ““Synthetic Metals”: A novel role for organic polymers (Nobel Lecture)”, Angew. Chem. Int. Ed., 40, 2581 (2001).
2. 陳壽安,導電高分子:新世代光電材料,物理雙月刊,中華民國物理學會,台灣,2, 312 (2001)。
3. T. P. McAndrew, “Corrosion prevention with electrically conductive polymers”, TRIP., 5, 7 (1997).
4. G. Natta, G. Mazzanti and P. Corradini, “Stereospecific polymerization of acetylene”, Atti Accad. Nazl.Lincei, Rend., 25, 3 (1958).
5. H. Shirakawa and S. Ikeda, “Infrared spectra of polyacetylene”, Polym. J., 2, 231 (1971).
6. T. Ito, H. Shirakawa and S. Ikeda, “Simultaneous polymerization and formation of polyacetylene film on the surface of a concentrated soluble Ziegler-type catalyst solution”, J. Polymer Sci., Polymer Chem. Ed., 12, 11 (1974).
7. T. Ito, H. Shirakawa and S. Ikeda, “Thermal cis–trans isomerization and decomposition of polyacetylene”, J. Polymer Sci., Polymer Chem. Ed., 13, 1943 (1975).
8. C. K. Chiang, C. R. J. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev. Lett., 39, 1098 (1977).
9. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene”, Chem. Commun., 578, (1977).
10. A. J. Heeger, “Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel Lecture) ”, Angew. Chem. Int. Ed., 40, 2591 (2001).
11. H. Lethby, “On the production of a blue substance by the electrolysis of sulphate of aniline”, J. Chem. Soc., 15, 161 (1862).
12. J. Langer, “Unusual properties of the aniline black: Does the superconductivity exist at room temperature?”, Solid State Commun., 26, 839 (1978).
13. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu and N. L. D. Somasir, “‘Polyaniline’: interconversion of metallic and insulating forms”, Mol. Cryst. Liq. Cryst., 121, 173 (1985).
14. W. S. Huang, B. D. Humphrey and A. G. MacDiarmid, “Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes”, J. Chem. Soc. Faraday Trans., 82, 2385 (1986).
15. S. S. Pandey, S. Annapoorni and B. D. Malhocra, “Synthesis and characterization of poly(aniline-co-o-anisidine). A processable conducting copolymer”, Macromolecules, 26, 3190 (1993).
16. A. G. MacDiarmid, J. C. Chiang, A. F. Richter and A. J. Epstein, “Polyaniline: a new concept in conducting polymers”, Synth. Met., 18, 285 (1987).
17. J. M. Kinyanjui and D. W. Hatchett, “Chemical synthesis of a polyaniline/gold composite using tetrachloroaurate”, Chem. Mater., 16, 3390 (2004).
18. T. K. Sarma and A. Chattopadhyay, “One pot synthesis of nanoparticles of aqueous colloidal polyaniline and its Au-nanoparticle composite from monomer vapor”, J. Phys. Chem. A, 108, 7837 (2004).
19. K. Tzou and R. V. Gregory, “Kinetic study of the chemical polymerization of aniline in aqueous solutions”, Synth. Met., 47, 267 (1992).
20. S. A. Chen and C. C. Tsai, “Structure/properties of conjugated conductive polymers. 2. 3-ether-substituted polythiophenes and poly(4-methylthiophene)s”, Macromolecules, 26, 2234 (1993).
21. Y. S. Negi and P. V. Adhyapak, “Development in polyaniline conducting polymers”, J. Macromol. Sci. Polym. Rev., C42, 35 (2002).
22. J. Huang and R.B. Kaner, “A general chemical route to polyaniline nanofibers”, J. Am. Chem. Soc., 126, 851 (2004).
23. J. Huang and R. B. Kaner, “Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study”, Angew. Chem. Int. Ed., 43, 5817 (2004).
24. N. K. Guimard, N. Gomez and C. E. Schmidt, “Conducting polymers in biomedical engineering”, Prog. Polym. Sci., 32, 876 (2007).
25. A. Malinauskas and R. Holze, “An in situ UV—vis spectroelectrochemical investigation of the initial stages in the electrooxidation of selected ring- and nitrogen-alkylsubstituted anilines”, Electrochim. Acta, 44, 2613 (1999).
26. A. F. Diaz and J. A. Logan, “Electroactive polyaniline films”, J. Electroanal. Chem., 111, 111 (1980).
27. T. Kobayashi, H. Yoneyama and A. Tamura, “Polyaniline film-coated electrodes as electrochromic display devices”, J. Electroanal. Chem., 161, 419 (1984).
28. M. Leclerc, J. Guay and L.H. Dao, “Synthesis and characterization of poly(alkylanilines)”, Macromolecules, 22, 649 (1989).
29. A. A. Athawale, B. A. Deore and M. V. Kulkami, “Spectroscopic and electrochemical properties of poly(2,5 dimethyl aniline) films”, Mater. Chem. Phys., 60, 262 (1999).
30. L. X. Wang, X. B. Jing and F. S. Wang, “The influence of protonic acids on the chemical polymerization of ortho-methylaniline”, Synth. Met., 41, 745 (1991).
31. W. A. Gazotti Jr., R. Faez and M. A. D. Paoli, “Electrochemical, electrochromic and photoelectrochemical behavior of a highly soluble polyaniline derivative: poly(o-methoxyaniline) doped with functionalized organic acids”, J. Electroanal. Chem., 415, 107 (1996).
32. G. Pistoia and R. Rosati, “Electrochemical synthesis of poly(2,5-dimethoxyaniline): Evaluation of the Equivalent circuit associated with the film and of its stability in solution”, Electrochim. Acta, 39, 333 (1994).
33. J. W. Chevalier, J. Y. Bergeron and L. H. Dao, “Synthesis, characterization, and properties of poly(N-alkylanilines)”, Macromolecules, 25, 3325 (1992).
34. W. Y. Zheng, K. Levon, J. Laakso and J. E. Osterholm, “Characterization and solid-state properties of processable N-alkylated polyanilines in the neutral state”, Marcomolecules, 27, 7754 (1994).
35. S. A. Chen and G. W. Hwang, “Water-soluble self-acid-doped conducting polyaniline: structure and properties”, J. Am. Chem. Soc., 117, 10055 (1995).
36. J. Guay, R. Paynter and L. H. Dao, “Synthesis and characterization of poly(diarylamines): a new class of electrochromic conducting polymers”, Macromolecules, 23, 3598 (1990).
37. W. C. Chen, T. C. Wen and A. Gopalan, “Electrochemical and spectroelectrochemical evidences for copolymer formation between 2-aminodiphenylamine and aniline”, J. Electrochem. Soc., 148, E427 (2001).
38. J. Yue and A. J. Epstein, “Synthesis of self-doped conducting polyaniline”, J. Am. Chem. Soc., 112, 2800 (1990).
39. C. H. Yang and T. C. Wen, “Electrochemical copolymerization of aniline and para-phenylenediamine on IrO2-coted titanium electrode”, J. Appl. Electrochem., 24, 166 (1994).
40. H. Tang, A. Kitani and S. Ho, “Electrochemical copolymerization of aniline and aniline-2,5-disulfonic acid”, Electrochim. Acta, 42, 3421 (1997).
41. S. A. Chen and G. W. Hwang, “Synthesis of Water-Soluble Self-Acid-Doped Polyaniline”, J. Am. Chem. Soc., 116, 7939 (1994).
42. H. K. Lin and S. A. Chen, “Synthesis of new water-soluble self-doped polyaniline”, Macromolecules, 33, 8117 (2000).
43. M. Sato, S. Yamanaka, J. I. Nakaya and K. Hyodo, “Electrochemical copolymerization of aniline with o-aminobenzonitrile”, Electrochim Acta, 39, 2159 (1994).
44. J. Y. Lee and C. Q. Cui, “Electrochemical copolymerization of aniline and metanilic acid”, J. Electroanal. Chem., 403, 109 (1996).
45. A. A. Karyakin, I. A. Maltsev and L. V. Lukachova, “The influence of defects in polyaniline structure on its electroactivity: optimization of ‘self-doped’ polyaniline synthesis”, J. Electroanal. Chem., 402, 217 (1996).
46. H. S. O. Chan, S. C. Ng, W. S. Sim, K. L. Tan and B. T. G. Tan, “Preparation and characterization of electrically conducting copolymers of aniline and anthranilic acid: evidence for self-doping by x-ray photoelectron spectroscopy”, Macromolecules, 25, 22 (1992).
47. B. Rajesh, K. R. Thampi, J. M. Bonard, H. J. Mathieu, N. Xanthopoulos and B. Viswanathan, “Nanostructured conducting polyaniline tubules as catalyst support for Pt particles for possible fuel cell applications”, Electrochem. Solid-State Lett., 7, A404 (2004).
48. B. Rajesh, K. Ravindranathan Thampi, J. M. Bonard, A. J. McEvoy, N. Xanthopoulos, H. J. Mathieu and B. Viswanathan, “Pt particles supported on conducting polymeric nanocones as electro-catalysts for methanol oxidation”, J. Power Sources, 133, 155 (2004).
49. F. Xie, Z. Tian, H. Meng and P. K. Shen, “Increasing the three-phase boundary by a novel three-dimensional electrode”, J. Power Sources, 141, 211 (2005).
50. H. Zhou, H. Chen, S. Luo, J. chen, W. Wei and Y. Kuang, “Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline”, Biosens. Bioelectron., 20, 1305 (2005).
51. Y. Xian, Y. Hu, F. Liu, Y. Xian, H. Wang and L. Jin, “Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite”, Biosens. Bioelectron., 21, 1996 (2006).
52. W. Li, Q.X. Jia and H. L. Wang, “Facile synthesis of metal nanoparticles using conducting polymer colloids”, Polymer, 47, 23 (2006).
53. J. Li and X. Q. Lin, “Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid”, Anal. Chim. Acta, 596, 222 (2007).
54. Y. Gao, C. A. Chen, H. M. Gau, J. A. Bailey, E. Akhadov, D. Williams and H. L. Wang, “Facile synthesis of polyaniline-supported Pd nanoparticles and their catalytic properties toward selective hydrogenation of alkynes and cinnamaldehyde”, Chem. Mater., 20, 2839 (2008).
55. D. N. Muraviev, J. Macanas, M. Farre, M. Munoz and S. Alegret, “Novel routes for inter-matrix synthesis and characterization of polymer stabilized metal nanoparticles for molecular recognition devices”, Sens. Actuator B-Chem., 118, 408 (2006).
56. D. N. Muraviev, M. I. Pividory, J. L. M. Soto and S. Alegret, “Extractant assisted synthesis of polymer stabilized platinum and palladium metal nanoparticles for sensor applications”, Solv. Extract. Ion Exchange, 24, 731 (2006).
57. P. V. Samant and J. B. Fernandes, “Nickel-modified manganese oxide as an active electrocatalyst for oxidation of methanol in fuel cells”, J. Power Sources, 79, 114 (1999).
58. A. K. Shukla, M. Neergat, P. Bera, V. Jayaram and M. S. Hegde, “An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells”, J. Electroanal. Chem., 504, 111 (2001).
59. U. A. Paulus, A. Wokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, N. M. Markovic and P. N. Ross, “Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes”, Electrochim. Acta, 47, 3787 (2002).
60. Z. Jia, J. Liu and Y. Shen, “Fabrication of a template-synthesized gold nanorod-modified electrode for the detection of dopamine in the presence of ascorbic acid”, Electrochem. Commun., 9, 2739 (2007).
61. C. Jiang and X. Lin, “Preparation of three-dimensional composite of poly(N-acetylaniline) nanorods/platinum nanoclusters and electrocatalytic oxidation of methanol”, J. Power Sources, 164, 49 (2007).
62. A. N. Shipway, E. Katz and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications”, Chemphyschem, 1, 18 (2000).
63. J. Wang, “Nanomaterial-based electrochemical biosensors”, Analyst, 130, 421 (2005).
64. Y. Wang, Z. Liu, B. Han, Z. Sun, Y. Huang and G. Yang, “Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant”, Langmuir, 21, 833 (2005).
65. D. G. Shchukin, I. L. Radtchenko and G. B. Sukhoruov, “Photoinduced reduction of silver inside microscale polyelectrolyte capsules”, ChemPhysChem, 4, 1101 (2003).
66. L. M. Huang and T. C. Wen, “Platinum–ruthenium nanoparticles in poly(2,5-dimethoxyaniline)-poly(styrene sulfonic acid) via one-step synthesis route for methanol oxidation”, J. Power Sources, 182, 32 (2008).
67. L. H. Mascaro, D. Goncalves and L. O. S. Bulhoes, “Electrocatalytic properties and electrochemical stability of polyaniline and polyaniline modified with platinum nanoparticles in formaldehyde medium”, Thin Solid Films, 461, 243 (2004).
68. F. Gloaguen, J. M. Leger and C. Lamy, “Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates”, J. Appl. Electrochem., 27, 1052 (1997).
69. L. Niu, Q. Li, F. Wei, S. Wu, P. Liu and X. Cao, “Electrocatalytic behavior of Pt-modified polyaniline electrode for methanol oxidation: Effect of Pt deposition modes”, J. Electroanal. Chem., 578, 331 (2005).
70. G. Schmid and G. L. Hornyak, “Metal clusters-new perspectives in future nanoelectronics”, Solid State Mater. Sci., 2, 204 (1997).
71. J. H. Kim, J. H. Cho, G. S. Cha, C. W. Lee, H. B. Kim and S. H. Paek, “Conductimetric membrane strip immunosensor with polyaniline-bound gold colloids as signal generator”, Biosens. Bioelectron., 14, 907 (2001).
72. J. Janata and M. Josowicz, “Conducting polymers in electronic chemical sensors”, Nat. Mater., 2, 19 (2003).
73. F. Ficicioglu and F. Kadirgan, “Electrooxidation of methanol on platinum doped polyaniline electrodes: deposition potential and temperature effect”, J. Electroanal. Chem., 430, 179 (1997).
74. C. C. Hu, E. Chen and J. Y. Lin, “Capacitive and textural characteristics of polyaniline-platinum composite films”, Electrochim. Acta, 47, 2741 (2002).
75. M. Gerard, A. Chaubey and B.D. Malhotra, “Application of conducting polymers to biosensors”, Biosens. Bioelectron., 17, 345 (2002).
76. E. Bakker, “Electrochemical Sensors”, Anal. Chem., 76, 3285 (2004).
77. N. K. Guimard, N. Gomez and C. E. Schmidt, “Conducting polymers in biomedical engineering”, Prog. Polym. Sci., 32, 876 (2007).
78. S. Dogan, U. Akbulut, T. Yalcin, S. Suzer and L. Toparre, “Conducting polymers of aniline II. A composite as a gas sensor”, Synth. Met., 60, 27 (1993).
79. J. Ye and R.P. Baldwin, “Flow injection analysis of electroinactive anions at a polyaniline electrode”, Anal. Chem., 60, 1979 (1988).
80. L. Zhang, “The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of β-naphthalenesulfonic acid”, Electrochim. Acta, 52, 6969 (2007).
81. M. P. Hogarth and T. R. Ralph, “Catalysis for low temperature fuel cells - Part III: Challenges for the direct methanol fuel cell”, Platinum Metals Rev., 46, 146 (2002).
82. J. W. Long, R. M. Stroud, K. E. Swider-Lyons and D. R. Rolison, “Catalytic nanoarchitectures—The importance of nothing and the unimportance of periodicity”, J. Phys. Chem. B, 104, 9772 (2000).
83. C. A. Bessel, K. Laubernds, N. M. Rodrigues and R. T. L. Baker, “Graphite nanofibers as an electrode for fuel cell applications”, J. Phys. Chem. B., 105, 1115 (2001).
84. E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel and C. M. Lukehart, “A Pt−Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst”, J. Phys. Chem. B., 105, 8097 (2001).
85. Z. L. Liu, X. H. Lin, J. Y. Lee, W. Zhang, M. Han and L. M. Gan, “Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells”, Langmuir, 18, 4054 (2002).
86. W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G. Q. Sun and Q. Xin, “Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells”, J. Phys. Chem. B., 107, 6292 (2003).
87. Y. C. Liu, X. P. Qie, Y. Q. Huang and W. T. Zhu, “Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts”, Carbon, 40, 2375 (2002).
88. Y. C. Liu, X. P. Qie, Y. Q. Huang, W. T. Zhu and G. S. Wu, “Impedance studies on mesocarbon microbeads supported Pt-Ru catalytic anode”, J. Power Sources, 114, 10 (2003).
89. B. Rajesh, K. R. Thampi, J. M. Bonard, H. J. Mathieu, N. Xanthopoulos and B. Viswanathan, “Electronically conducting hybrid material as high performance catalyst support for electrocatalytic application”, J. Power Sources, 141, 35 (2005).
90. Y. M. Wu, W. S. Li, J. Lu, J. H. Du, D. S. Lu and J. M. Fu, “Electrocatalytic oxidation of small organic molecules on polyaniline-Pt-HxMoO3”, J. Power Sources, 145, 286 (2005).
91. H. S. Park, Y. J. Kim, W. H. Hong and H. L. Lee, “Physical and electrochemical properties of Nafion/polypyrrole composite membrane for DMFC”, J. Membrane Sci., 272, 28 (2006).
92. N. N. Aleshin, “Polymer nanofibers and nanotubes: Charge transport and device applications”, Adv. Mater., 18, 17 (2006).
93. Z. A. Hu, X. L. Shang, Y. Y. Yang and H. Y. Wu, “The electrochemical synthesis of polyaniline/polysulfone composite films and electrocatalytic activity for ascorbic acid oxidation”, Electrochim. Acta, 51, 3351 (2006).
94. J. S. Do and W. B. Chang, “Amperometric nitrogen dioxide gas sensor based on PAn/Au/Nafion prepared by constant current and cyclic voltammetry methods”, Sens. Actuator B-Chem., 101, 97 (2004).
95. I. Jureviciute, K. Brazdziuviene, L. Bernotaite, B. Salkus and A. Malinauskas, “Polyaniline-modified electrode as an amperometric ascorbate sensor”, Sens. Actuator B-Chem., 107, 716 (2005).
96. P. N. Bartlett, J. H. Wang and E. N. K. Wallace, “A microelectrochemical switch responsive to NADH”, Chem. Commun., 359 (1996).
97. P. N. Bartlett and E. Simon, “Poly(aniline)–poly(acrylate) composite films as modified electrodes for the oxidation of NADH”, Phys. Chem. Chem. Phys., 2, 2599 (2000).
98. O. A. Raitman, E. Katz, A. F. Buckmann and I. Willner, “Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems”, J. Am. Chem. Soc., 124, 6487 (2002).
99. P. N. Bartlett and E. Simon, “Measurement of the kinetic isotope effect for the oxidation of NADH at a poly(aniline)-modified electrode”, J. Am. Chem. Soc., 125, 4014 (2003).
100. V. N. Andreev, “Effect of solution acidity on the electrochemical behavior of nafion-polyaniline films”, Rusian J. Electrochem., 41, 224 (2005).
101. G. Milczarek, “Electrochemical modification of poly-aniline films in the presence of guaiacol–sulfonic acid”, Electrochem. Commun., 9, 123 (2007).
102. C. Li and S. Mu, “The electrochemical activity of sulfonic acid ring-substituted polyaniline in the wide pH range”, Synth. Met., 149, 143 (2005).
103. R. Sivakumar and R. Saraswathi, “Redox properties of poly(N-methylaniline)”, Synth. Met., 138, 381 (2003).
104. D. W. Hatchett and M. Josowicz, “Composites of intrinsically conducting polymers as sensing nanomaterials”, Chem. Rev., 108, 746 (2008).
105. L. M. Huang, T. C. Wen and A. Gopalan, Mater. “Poly(2,5-dimethoxyaniline) based electrochromic device”, Chem. Phys., 77, 726 (2002).
106. T. C. Wen, L. M. Huang and A. Gopalan, “Electrochemical synthesis of a polyaniline–Based conducting copolymer with –S-S– links”, J. Electrochem. Soc., 148, D9 (2001).
107. S. Ivanov, V. Tsakova and V. M. Mirsky, “Conductometric transducing in electrocatalytical sensors: Detection of ascorbic acid”, Electrochem. Commun., 8, 643 (2006).
108. P. N. Bartlett and E. N. K. Wallace, “The oxidation of ascorbate at poly(aniline)–poly(vinylsulfonate) composite coated electrodes”, Phys. Chem. Chem. Phys., 3, 1491 (2001).
109. S.L. Mu and J.Q. Kan, “The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of ferrocenesulfonic acid”, Synth. Met., 132, 29 (2002).
110. A. Malinauskas and R. Holze, “In situ UV-Vis spectroelectrochemical study of polyaniline degradation”, J. Appl. Polym. Sci., 73, 287 (1999).
111. S. W. Byun and S. S. Im, “Degradation kinetics of electrical conductivity in transparent polyaniline-nylon composite films”, Synth. Met., 69, 219 (1995).
112. Y. T. Tsai, T. C. Wen and A. Gopalan, “Tuning the optical sensing of pH by poly(diphenylamine)”, Sens. Actuator B-Chem., 96, 646 (2003).
113. R. A. Saraceno, J. G. Pack and A. G. Ewing, “Catalysis of slow charge transfer reactions at polypyrrole-coated glassy carbon electrodes”, J. Electroanal. Chem., 197, 265 (1986).
114. L. Xiao, J. Chen and C. S. Cha, “Elimination of the interference of ascorbic acid in the amperometric detection of biomolecules in body fluid samples and the simple detection of uric acid in human serum and urine by using the powder microelectrode technique”, J. Electroanal. Chem., 495, 27 (2000).
115. R. Gangopadhyay and A. De, “Conducting Polymer Nanocomposites: A Brief Overview”, Chem. Mater., 12, 608 (2000).
116. C. W. Kuo, L. M. Huang, T. C. Wen and A. Gopalan, “Enhanced electrocatalytic performance for methanol oxidation of a novel Pt-dispersed poly(3,4-ethylenedioxythiophene)–poly (styrene sulfonic acid) electrode”, J. Power Sources, 160, 65 (2006).
117. S. Sharma, C. Nirkhe, S. Pethkar and A. A. Athawale, “Chloroform vapour sensor based on copper/polyaniline nanocomposite”, Sens. Actuator B-Chem., 85, 131 (2002).
118. A. A. Athawale, S. V. Bhagwat and P. P. Katre, “Nanocomposite of Pd–polyaniline as a selective methanol sensor”, Sens. Actuator B-Chem., 114, 263 (2006).
119. L. Niu, Q. Li, F. Wei, X. Chen and H. Wang, “Formation optimization of platinum-modified polyaniline films for the electrocatalytic oxidation of methanol”, Synth. Met., 139, 271 (2003).
120. G. Wu, L. Li, J. H. Li, B. Q. Xu and J. Li, “Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films”, J. Power Sources, 155, 118 (2006).
121. S. P. Jiang, Z. Liu, H. L. Tang and M. Panb, “Synthesis and characterization of PDDA-stabilized Pt nanoparticles for direct methanol fuel cells”, Electrochim. Acta, 51, 5721 (2006).
122. V. Selvaraj and M. Alagar, “Pt and Pt–Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation”, Electrochem. Commun., 9, 1145 (2007).
123. L. M. Huang, W. R. Tang and T. C. Wen, “Spatially electrodeposited platinum in polyaniline doped with poly(styrene sulfonic acid) for methanol oxidation”, J. Power Sources, 164, 519 (2007).
124. L. M. Huang and T. C. Wen, “One-step synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid)”, Mat. Sci. Eng. A-Struct., 445, 7 (2007).
125. D. W. Hatchett, R. Wijeratne and J. M. Kinyanjui, “Reduction of PtCl62- and PtCl42- in polyaniline: Catalytic oxidation of methanol at morphologically different composites”, J. Electroanal. Chem., 593, 203 (2006).
126. J. M. Kinyanjui, N. R. Wijeratne, J. Hanks and D. W. Hatchett, “Chemical and electrochemical synthesis of polyaniline/platinum composites”, Electrochim. Acta, 51, 2825 (2006).
127. B. A. Sexton, “Methanol decomposition on platinum (111)”, Surf. Sci., 102, 271 (1981).
128. C. S. Wu, F. Y. Lin, C. Y. Chen and P. P. Chua, “A polyvinyl alcohol/p-sulfonate phenolic resin composite proton conducting membrane”, J. Power Sources, 160, 1204 (2006).
129. T. C. Wen, L. M. Huang and A. Gopalan, “Spectroscopic and thermal properties of the copolymer of aniline with dithiodianiline”, Synth. Met., 123, 451 (2001).
130. J. Jang, J. Ha and J. Cho, “Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications”, Adv. Mater., 19, 1772 (2007).
131. J. M. Kinyanjui, J. Hanks, D. W. Hatchett, A. Smith and M. Josowicz, “Chemical and electrochemical synthesis of polyaniline/gold composites”, J. Electrochem. Soc., 151, D113 (2004).
132. J. Kua and W. A. Goddard, “Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells”, J. Am. Chem. Soc., 121, 10928 (1999).
133. S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro and M. F. Bertino, “One-pot synthesis of polyaniline-metal nanocomposites”, Chem. Mater., 17, 5941 (2005).
134. K. Scott and W. Taama and J. Cruickshank, “Performance and modeling of a direct methanol solid polymer electrolyte fuel cell”, J. Power Sources, 65, 159 (1997).
135. K. Scott, W.M. Taama, P. Argyropoulos and K. Sundmacher, “The impact of mass transport and methanol crossover on the direct methanol fuel cell”, J. Power Sources, 83, 204 (1999).
136. S. H. Liang, C. C. Liu and C. H. Tsaia, “A Planar-Structure Electrochemical Methanol Sensor for Direct Methanol Fuel Cells Applications”, J. Electrochem. Soc., 153, H138 (2006).
137. H. Zhao, J. Shen, J. Zhang, H. Wang, D. P. Wilkinson and C. E. Gua, “Liquid methanol concentration sensors for direct methanol fuel cells”, J. Power Sources, 159, 626 (2006).
138. E Leiva and M. Giordano, “Influence of platinum electrode surface on the electroadsorption and electro-oxidation of methanol in acid solutions”, J. Electrochem. Soc., 130, 1305 (1983).
139. P. Kim, H. Kim, J. B. Joo, W. Kim, I. K. Song and J. Yi, “Preparation and application of nanoporous carbon templated by silica particle for use as a catalyst support for direct methanol fuel cell”, J. Power Sources, 145, 139 (2005).
140. L. Zhang, Y. Tang, J. Bao, T. Lu and C. Li, “A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell”, J. Power Sources, 162, 177 (2006).
141. Z. Li, Q. Zhang, H. Liu, P. He, X. Xu and J. Li, “Organic–inorganic composites based on room temperature ionic liquid and 12-phosphotungstic acid salt with high assistant catalysis and proton conductivity”, J. Power Sources, 158, 103 (2006).
142. A. Kitani, T. Akashi, K. Sugimoto and S. Ito, “Electocatalytic oxidation of methanol on platinum modified polyaniline electrodes”, Synth. Met., 121, 1301 (2001).
143. P. Holzhauser, K. Bouzek and Z. Bastl, “Electrocatalytic properties of polypyrrole films prepared with platinate(II) counter-ions”, Synth. Met., 155, 501 (2005).
144. X. Jiang, L. Zhang and S. Dong, “Assemble of poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works onto ITO electrode and its application for the direct electrochemistry and electrocatalytic behavior of cytochrome c”, Electrochem. Commun., 8, 1137 (2006).
145. J. Li and X. Lin, “A composite of polypyrrole nanowire: Platinum modified electrode for oxygen reduction and methanol oxidation reactions”, J. Electrochem. Soc., 154, B1074 (2007).
146. C. H. Yang and T. C. Wen, “Electrodeposited platinum microparticles in a sulfonate-polyaniline film for the electrosorption of methanol and sorbitol”, Electrochim. Acta, 44, 207 (1998).
147. C. F. Chang, W. C. Chen, T. C. Wen and A. gopalan, “Electrochemical and spectroelectrochemical studies on copolymerization of diphenylamine with 2,5-Diaminobenzenesulfonic acid”, J. Electrochem. Soc., 149, E298 (2002).
148. T. C. Wen, C. H. Yang, Y. C. Chen and W. C. Lin, “Electrochemical synthesis and spectroelectrochemical characteristics of pyrrole-2,2’-dithiodianiline copolymers”, J. Electrochem. Soc., 150, D123 (2003).
149. J. Zhu, R. R. Sattler, A. Garsuch, O. Yepez and P. G. Pickup, “Optimisation of polypyrrole/Nafion composite membranes for direct methanol fuel cells”, Electrochim. Acta, 51, 4052 (2006).
150. L. M. Huang, T. C. Wen and A. Gopalan, “In situ UV-visible spectroelectrochemical studies on electrochromic behavior of poly(2,5-dimethoxyaniline)”, Synth. Met., 130, 155 (2002).
151. S. Moravcova and K. Bouzek, “Modification and characterization of a novel composite material based on a nafion membrane and polypyrrole”, J. Electrochem. Soc., 152, A2080 (2005).
152. S. Skaarup, K. West, B. ZachauChristiansen, M. A. Careem and G. K. R. Senadeera, “Electrolyte and ion memory effects in highly conjugated polypyrrole”, Solid State Ionics, 72, 108 (1994).
153. N. Hernandez, J. M. Ortega, M. Choy and R. Ortiz, “Electrodeposition of silver on a poly(o-aminophenol) modified platinum electrode”, J. Electroanal. Chem., 515, 123 (2001).
154. A. Frydrychewicz, S. Y. Vassiliev, G. A. Tsirlina and K. Jackowska, “Reticulated vitreous carbon–polyaniline–palladium composite electrodes”, Electrochim. Acta, 50, 1885 (2005).
155. A. Chen, D. J. L. Russa and B. Miller, “Effect of the iridium oxide thin film on the electrochemical activity of platinum nanoparticles”,Langmuir, 20, 9695 (2004).
156. M. A. A. Rahim, R. M. A. Hameed and M. W. Khalil, “The role of a bimetallic catalyst in enhancing the electro-catalytic activity towards methanol oxidation”, J. Power Sources, 135, 42 (2004).
157. S. Q. Song, Z. X. Laing, W. J. Zhou, G. Q. Sun, Q. Xin, V. Stergiopoulos and P. Tsiakaras, “Direct methanol fuel cells: The effect of electrode fabrication procedure on MEAs structural properties and cell performance”, J. Power Sources, 145, 495 (2005).
158. A. P. O’Mullane, S. E. Dale, J. V. Macpherson and P. R. Unwin, “Fabrication and electrocatalytic properties of polyaniline/Pt nanoparticle composites”, Chem. Commun., 4, 1606 (2004).
159. G.Wu, L. Li and B.Q. Xu, “Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation”, Electrochim. Acta, 50, 1 (2004).
160. H. Hoster, T. Iwasita, H. Baumgartner and W. Vielsticha, “Current-time behavior of smooth and porous PtRu surfaces for methanol oxidation”, J. Electrochem. Soc., 148, A496 (2001).