研究生: |
吳韋廷 Wu, Wei-Ting |
---|---|
論文名稱: |
以磁控濺鍍法製作之氧化鋅鈦銦薄膜電晶體及其光電元件之應用 Investigation of Indium Titanium Zinc Oxide Thin Film Transistors Fabricated by RF Sputtering System and Their Optoelectronic Application |
指導教授: |
劉濱達
Liu, Bin-Da |
共同指導教授: |
張守進
Chang, Shoou-Jinn |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 氧化鋅鈦銦 、光檢測器 、光電晶體 、薄膜電晶體 |
外文關鍵詞: | InTiZnO, Photodetector, Phototransistor, Thin Film Transistor |
相關次數: | 點閱:73 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用射頻磁控濺鍍法沉積非晶型氧化鋅鈦銦薄膜,並討論在不同製程條件下薄膜的特性,接著將這些薄膜作為主動層應用於薄膜電晶體與紫外光檢測器,並進行分析及討論其特性。
首先以磁控濺鍍的方式在不同氧流量的製程條件下沉積薄膜,並且從三方向去討論氧化鋅鈦銦薄膜特性,分別是薄膜結構特性、薄膜光學特性及薄膜表面/縱深分析。在結構特性上,氧化鋅鈦銦薄膜使用磁控濺鍍的方式長得非常緻密且呈現非晶型態。而在光學特性的部分,實驗顯示薄膜在可見光區有80%的穿透率,可知氧化鋅鈦銦薄膜是一種寬能隙且高穿透的材料。此外,在薄膜表面/縱深分析結果中得知,因製作時氧流量的改變可以有效地改變材料氧空缺組成的比例,從X射線光電子能譜(XPS)圖得知,當氧流量越大時,薄膜裡的氧空缺會減少。
實驗的第二部分是將氧化鋅鈦銦應用於光檢測器,改變濺鍍通氧流量,以比較其特性差異。當氧流量提高時,能有效的抑制暗電流。在氧氣流量比例為4%的情況下,元件的暗電流為2.21 × 10−10安培,亮暗電流比為1.29 × 104,響應拒斥比為4.34 × 103。
實驗的第三部分是使用二氧化矽做為氧化鋅鈦銦薄膜電晶體的閘極介電層,並且藉由濺鍍通氧流量的改變,來找出薄膜電晶體最佳參數。在室溫下得到場效電子遷移率為0.884 cm2/V∙s,臨界電壓為−0.9 V,次臨界擺幅為0.41 V/dec,ON/OFF電流比為105。此外,本文也使用高介電常數的氧化鋁取代二氧化矽做為閘極介電層,提升的場效電子遷移率為2.317 cm2/V∙s,臨界電壓為1.39 V,次臨界擺幅改善至0.3 V/dec,ON/OFF電流比增加至106。最後,將薄膜電晶體延伸應用為光電晶體,在無偏壓的情況下可得到響應拒斥比為1817。
In this thesis, indium titanium zinc oxide (InTiZnO) is deposited by RF magnetron sputtering and the film properties are discussed thoroughly under different processing ambiences. Next, we will use InTiZnO thin film for device fabrication, including photodetectors and thin film transistors (TFTs).
In the first part of the experimental results and features discussion, we utilize the RF-sputtering system to grow films with different conditions and the film properties are discussed for three aspects which are structural, optical, and surface/depth element analysis. Thin films are amorphous grown by RF magnetron sputtering. And the measurement results show that the transmittance in the visible region can achieve more than 80%. Next, with the material element analysis, under the different sputtering oxygen flow ratios, films may exhibit different characteristics. The XPS results suggest that as the oxygen flow ratio increases, oxygen defects will decrease.
In the second part of the experiment, InTiZnO photodetectors are fabricated under various oxygen flow ratios to investigate differences among these devices. When oxygen flow ratio increases, InTiZnO photodetector can more effectively suppress dark current and the order of magnitude of current reach picoampere level, increasing the on-off ratio of devices. It is found that 4% oxygen flow ratio (Sample B) has the best performance compared to others. And with the optimized fabrication parameters, the dark current is 2.21 × 10−10 A, on-off ratio is 1.29 × 104, and the rejection ratio can reach 4.34 × 103.
In the third part, InTiZnO TFTs with silica (SiO2) as the gate dielectric layer are realized. Manipulation of oxygen flow ratios is conducted to find the optimized TFTs. The transfer characteristics of optimized TFTs at room temperature show the field effect mobility of 0.884 cm2/V∙s, threshold voltage of −0.9 V, and subthreshold swing of 0.41 V/dec. The on-off current ratio increased by approximately five orders of magnitude. In addition, we substitute alumina (Al2O3) for silica as the gate dielectric material via atomic layer deposition method. The devices show the field effect mobility of 2.317 cm2/V∙s, threshold voltage of 1.39 V, and subthreshold swing of 0.3 V/dec. The on-off current ratio increased by nearly six orders of magnitude. Lastly, InTiZnO TFTs are operated under light illumination to examine the performance. At no bias, we can obtain a rejection ratio about 1817.
[1] T. Minami and T. Miyata, "Present status and future prospects for development of non- or reduced-indium transparent conducting oxide thin films," Thin Solid Films, vol. 517, pp. 1474–1477, 2008.
[2] V. Shelke, B. K. Sonawane, M. P. Bhole, and D. S. Patil, "Effect of annealing temperature on the optical and electrical properties of aluminum doped ZnO films," J. Non-Cryst. Solids, vol. 355, pp. 840–843, 2009.
[3] K.I. Lee, E. K. Kim, H.D. Kim, H.I. Kang, and J.T. Song, "Low temperature Al doped ZnO films on a flexible substrate by DC sputtering," Phys. Stat. Sol. (c), vol. 5, pp. 3344–3347, 2008.
[4] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol., vol.20, pp. S35–S44, 2005.
[5] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, and T. Marks, "Indium tin oxide alternatives-high work function transparent conducting oxides as anodes for organic light-emitting diodes," Adv. Mater., vol. 13, pp. 1476–1480, 2001.
[6] J. Hu and R. G. Gordon, "Textured aluminum‐doped zinc oxide thin films from atmospheric pressure chemical‐vapor deposition," Journal of Appl. Phys., vol. 71, pp. 880–890, 1992.
[7] M. Tadatsugu, S. Hirotoshi, N. Hidehito, and T. Shinzo, "Group III impurity doped zinc oxide thin films prepared by RF magnetron sputtering," Jpn. J. Appl. Phys., vol. 24, pp. L781–L784, 1985.
[8] J. H. Lee, S. Y. Lee, and B. O. Park, “Fabrication and characteristics of transparent conducting In2O3-ZnO thin films by ultrasonic spray pyrolysis,” Mater. Sci. Eng., B, vol. 127, pp. 267–271, 2006.
[9] H. Enoki, T. Nakayama, and J. Echigoya, “The electrical and optical properties of the ZnO2SnO2 thin films prepared by RF magnetron sputtering,” Phys. Status Solid A, vol. A129, pp. 181–191, 1992.
[10] J. H. Lee, S. Y. Lee, and B. O. Park, “Fabrication and characteristics of transparent conducting In2O3-ZnO thin films by ultrasonic spray pyrolysis,” Mater. Sci. Eng., B, vol. 127, pp. 267–271, 2006.
[11] R. AlAsmar, S. Juillaguet, M. Ramonda, A. Giani, P. Combette, A. Khoury, and A. Foucaran, “Fabrication and characterization of high quality undoped and Ga2O3-doped ZnO thin films by reactive electron beam co-evaporation technique,” J. Cryst. Growth, vol. 275, pp. 512–520, 2005.
[12] Y. Zhang, J. He, Z. Ye, L. Zhou, J. Huang, L. Zhu, and B. Zhao, “Structural and photoluminescence properties of Zn0.8Mg0.2O thin films grown on Si substrate by pulsed laser deposition,” Thin Solid Films, vol. 458, pp. 161–164, 2004.
[13] S. T. Shishiyanu, Teodor S. Shishiyanu, and Oleg I. Lupan, “Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor,” Sens. Actuators, B, vol. 107, pp. 379–386, 2005.
[14] B. Y. Oh, M. C. Jeong, W. Lee, and J. M. Myoung, ‘‘Properties of transparent conductive ZnO Al films prepared by co-sputtering,’’ J. Cryst. Growth, vol. 274, pp. 453–457, 2005.
[15] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-kappa gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243–7275, 2001.
[16] S. H. Kim, S. E. Kim, J. H. Park, S. H. Kim and M. S. Kim, ”A complementary method to determine the effective flow resistivity of flat ground states,” J. Korean Phys. Soc., vol. 43, pp. 868–874, 2003.
[17] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Dev. Lett., vol. 21, pp. 181–183, 2000.
[18] B. H. Lee, L. Kang, R. Nieh, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Appl. Phys. Lett., vol. 76, pp. 1926–1928, 2000.
[19] M. A. Quevedo-Lopez, M. El-Bouanani, B. E. Gnade, R. M. Wallace, M. R. Visokay, M. Douglas, M. J. Bevan, and L. Colombo, “Interdiffusion studies for HfSixOy and ZrSixOy on Si,” J. Appl. Phys., vol. 92, pp. 3540–3550, 2002.
[20] K. S. Hwang, Y. S. Jeon, S. B. Kim, C. K. Kim, and J. S. Oh, “Ca-doped ZrO2 thin films deposited by using the spin-coating pyrolysis process with a metal naphthenate precursor,” J. Korean Phys. Soc., vol. 43, pp. 754–757, 2003.
[21] H. Y. Yu, N. Wu, M. F. Li, C. Zhu, B. J. Cho, D. L. Kwong, C. H. Tung, J. S. Pan, J. W. Chai, W. D. Wang, D. Z. Chi, C. H. Ang, J. Z. Zheng, and S. Ramanathan, “Thermal stability of HfO2 AlO1-x on Si,” Appl. Phys. Lett., vol. 81, pp. 3618–3620, 2002.
[22] H. H. Zhang, C. Y. Ma, and Q. Y. Zhang, “Scaling behavior and structure transition of ZrO2 films deposited by RF magnetron sputtering,” Vacuum, vol. 83, pp. 1311–1316, 2009.
[23] Y. Lu, K. Bradley, and G. Gruner, “Nanotube optoelectronic memory devices,” Am. Chem. Soc., vol. 4, pp.1587–1591, 2004.
[24] Y. Huang and R. I. Hornsey, “Nitride-based LEDs with p-InGaN capping layer,” IEEE Trans. Electron Dev., vol. 50, pp. 2567–2570, 2003.
[25] G. Chaji, A. Nathan, and Q. Pankhurst, “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging,” Appl. Phys. Lett., vol. 93, pp. 203504-1–203504-3, 2008.
[26] N. M. Johnson and A. Chiang, “Highly photosensitive transistors in single-crystal silicon thin films on fused silica,” Appl. Phys. Lett., vol. 45, pp. 1102–1104, 1984.
[27] Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, “Amorphous silicon phototransistors,” Appl. Phys. Lett., vol. 56, pp. 650–652, 1990.
[28] C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors, vol. 9, pp. 6504–6529, 2009.
[29] C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors, vol. 9, pp. 6504–6529, 2009.
[30] Streetman, Ben G., and Sanjay Banerjee, Noise in Solid State Devices and Circuits. New Jersey: Prentice Hall, 1986.
[31] D. C. Reynolds, D. C. Look, B. Jogai, C.W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, “Neutral-donor–bound-exciton complexes in ZnO crystals,” Phys. Rev. B, vol. 57, pp. 12151–12155, 1998.
[32] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, “AlxGa1-xN:Si Schottky barrier photodiodes with fast response and high detectivity,” Appl. Phys. Lett., vol. 73, pp. 2146–2148, 1998.
[33] Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3/e. New York: McGraw-Hill, 2003.
[34] J. L. Vossen and W. Kern, Thin Flim Processes. New York: Academic Press, 1978.
[35] C. Y. Chang and S. M. Sze, ULSI Technology. New York: McGraw-Hill, 1996.
[36] S. I. Shah, Handbook of Thin Film Process Technology. London: Institute of Physics Pub, 1995.
[37] B.D. Cullity, Elements of X-ray Diffraction, 2/e. Boston: Addison Wesley, 1978.
[38] J. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis. New York: John Wiley and Sons Inc., 2003.
[39] A. Liu, Q. Zhang, G. X. Liu, F. K. Shan, J. Q. Liu, W. J. Lee, B. C. Shin, and J. S. Bae, “Oxygen pressure dependence of Ti-doped In-Zn-O thin film transistors,” J. Electroceram., vol. 33, pp. 31–36, 2014.
[40] M. Liao and Y. Koide, "High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film," Appl. Phys. Lett., vol. 89, no. 11, pp. 113509-1–113509-3, 2006.
[41] K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M. K. Ryu, and S. Y. Lee, ”High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors,” IEEE Electron Dev. Lett., vol. 31, pp. 311–313, 2010.
[42] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, ”Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer,” Appl. Phys Lett., vol. 40, pp. 1335–1338, 2007.
[43] H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, ”Amorphous oxide channel TFTs,” Thin Solid Films, vol. 516, pp. 1516–1522, 2008.
[44] S. B. Zhang, S.H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B, vol. 63, pp. 075205-1–075205-7, 2001.
[45] M. Furuta, Y. Kamada, M. Kimura, T. Hiramatsu, T. Matsuda, H. Furuta, C. Li, S. Fujita, and T. Hirao, “Analysis of hump characteristics in thin film transistors with ZnO channels deposited by sputtering at various oxygen partial pressures,” IEEE Electron Dev. Lett., vol. 31, pp. 1257–1259, 2010.
[46] M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, and H. Hosono, “Trap densities in amorphous InGaZnO4thin-film transistors,” Appl. Phys. Lett., vol. 92, pp. 133512–133512, 2008.
[47] L.Y. Su, H.Y. Lin, S.L. Wang, Y.H. Yeh, C.C. Cheng, L. H. Peng, and J.J. Huang, “Effects of gate-bias stress on ZnO thin-film transistors,” J. Soc. Inf. Displ., vol. 18, pp. 802–806, 2010.
[48] C.J. Kim, S. Kim, J.H. Lee, J.S. Park, S. Kim, J. Park, E. Lee, J. Lee, Y. Park, J. H. Kim, S. T. Shin, and U. I. Chung, “Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors,” Appl. Phys. Lett., vol. 108, pp. 252103-1–252103-3, 2009.
[49] W.S. Kim, Y.K. Moon, K.T. Kim, S.Y. Shin, B.D. Ahn, J.H. Lee, and J.W. Park, “The influence of the hafnium doping on negative bias stability in zinc oxide thin film transistor,” Electrochem. Solid-State Lett., vol. 13, pp. H295–H297, 2010.
[50] D.H. Son, D.H. Kim, J.H. Kim, S.J. Sung, E.A. Jung, J.K. Kang, “Low voltage, high performance thin film transistor with HfInZnO channel and HfO2 gate dielectric,” Electrochem. Solid-State Lett., vol. 13, pp. H274–H277, 2010.
[51] X.H. Zhang, B. Domercq, X. Wang, S. Yoo, T. Kondo, Z. L. Wang, and B. Kippelen, “High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD),” Org. Electron, vol. 8, pp. 718–726, 2007.
[52] C. C. Cheng, C. H. Chien, G. L. Luo, J. C. Liu, C. C. Kei, D. R. Liu, C. N. Hsiao, C. H. Yang, and C. Y. Chang, “Characteristics of Atomic-Layer-Deposited Al2O3 High-κ Dielectric Films Grown on Ge Substrates,” J. Electrochem. Soc., vol. 155, pp. G203–G208, 2008.
[53] D. C. Suh, Y. D. Cho, S. W. Kim, D-H. Ko, Y. Lee, M-H. Cho, and J. Oh, “Improved thermal stability of Al2O3/HfO2/Al2O3 high-κ gate dielectric stack on GaAs”, Appl. Phys. Lett., vol. 96, pp. 142112-1–142112-4, 2010.
[54] M. C. Hamilton and J. Kanicki, “Organic polymer thin-film transistor photosensors,” IEEE J. Sel. Top. Quan. Electron, vol. 10, pp. 840–848, 2004.
[55] M. C. Hamilton., S. Martin, and J. Kanicki, “Thin-film organic polymer phototransistors,” IEEE Trans. Electron Dev., vol. 51, pp. 877–885, 2004.
[56] H. S. Bae, M. H. Yoon, J. H. Kim, and Seongil Im, “Photodetecting properties of ZnO-based thin-film transistors,” Appl. Phys. Lett., vol. 83, pp. 5313–5315, 2003.
[57] W. K. Hong, B. J. Kim, T. W. Kim, G. Jo, S. Song, S. S. Kwon, A. Yoon, E.A. Stach, and T. Lee, “Electrical properties of ZnO nanowire field effect transistors by surface passivation,” Colloid Surf. A-Physicochem. Eng. Asp., vol. 313, pp. 378–382, 2008.