| 研究生: |
蔡鴻亦 Tsai, Hung-Yi |
|---|---|
| 論文名稱: |
鈣-矽氮(氧)化物螢光粉之合成及其應用於白光LED之分層遠距式結構探討 The Synthesis of Calcium Silicon-Based (Oxy)nitride Phosphors and the Investigation of Separated-Layer and Remote Configurations of Their Fabricated White Light-Emitting Diodes |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 氮氧化物螢光粉 、氮化物螢光粉 、分層塗佈結構 、白色發光二極體 |
| 外文關鍵詞: | oxy-nitride phosphors, nitride phosphors, separated-layer coating structure, white light-emitting diodes |
| 相關次數: | 點閱:171 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了製作演色性較高的白光LED,將黃色螢光粉混合紅色螢光粉並結合藍光LED為一可行的方式,因此本研究試圖在常壓下利用固態反應法合成適用於藍光激發的氮氧化物CaSi2O2N2:Eu2+與氮化物Ca2Si5N8:Eu2+螢光粉。此兩種螢光粉的放射峰分別在560及608 nm,且具有良好的熱穩定性(T50至少大於160℃),在450 nm激發下,最佳化Ca0.63Si2O2N2:0.37Eu2+螢光粉與最佳化Ca1.97Si5N8:0.03Eu2+螢光粉的外部量子效率分別為30.83%與24.02%,因此,此兩種螢光粉皆適合應用在藍光LED,此外,由於此兩種螢光粉均具有寬廣的激發光譜(300~520 nm),所以也可以應用在近紫外LED。
其中CaSi2O2N2:Eu2+螢光粉由於Eu2+之摻雜,使得晶格擴張,產生微結構改變,相對提高Eu2+在主體中之濃度淬滅點,放光強度不斷上升直至37 mol%出現最大值,而此時已達到Eu2+在主體中的最高固態溶解度,當摻雜濃度再上升,結構開始些微崩解,單位晶胞之體積變小,在這樣狀況下Eu2+濃度處於過飽和狀態,使濃度淬滅開始形成,放光強度下降。而因為此晶格變化,使得CaSi2O2N2主體相較於其它氮氧化物主體能夠允許較多的Eu2+摻雜量,經由量測,高摻雜濃度(37 mol%)的CaSi2O2N2:Eu2+螢光粉之外部量子效率為低摻雜濃度(5 mol%)者的2.47倍,其大大的提升在LED上的應用性。
將上述所合成的螢光粉應用在藍光LED上製作白光LED,並探討不同的螢光粉塗佈結構、遠距式塗佈結構及材料折射率對白光LED光學特性的影響,實驗結果顯示在350 mA驅動下,使用Y down/ R up Type (黃色螢光粉層在下,紅色螢光粉層在上)之螢光粉塗佈結構,及Step index (漸進式折射率)作為遠距式塗佈結構之白光LED的照明效率及光功率較使用Mixed Type (黃色、紅色螢光粉混和)之螢光粉塗佈結構及Silicone gel作為遠距式塗佈結構之白光LED分別提升20%及21.4%,其白光LED之照明效率、光功率、色度座標、色溫及演色性分別為32.58 lm/W、146.19 mW、(0.3217, 0.2704)、6401 K及78。
It was known that the combination of blue light-emitting diodes (LEDs) and the mixture of yellow and red phosphors was an alternative way to fabricate a phosphor-converted white LED (pc-WLED) with the high color rendering index (CRI). In this study, we sought to synthesize CaSi2O2N2:Eu2+ and Ca2Si5N8:Eu2+ phosphors which could be well excited by blue lights by the solid-state reaction under normal atmosphere. The main emission bands of CaSi2O2N2:Eu2+ and Ca2Si5N8:Eu2+ phosphors were located at 560 and 608 nm, respectively. Besides, they also exhibited the good thermal stability with T50 at >160℃. The external quantum efficiency of optimized Ca0.63Si2O2N2:0.37Eu2+ and optimized Ca1.97Si5N8:0.03Eu2+ were 30.83% and 24.02% under 450-nm excitation, respectively. Accordingly, both CaSi2O2N2:Eu2+ and Ca2Si5N8:Eu2+ phosphors showed the potential to be applied on the blue LEDs. Furthermore, their excitation spectra in a broad range of 300-520 nm indicated that these phosphors could also be applied on the pc-WLEDs with the near-UV LEDs.
The host lattice of CaSi2O2N2:Eu2+ phosphors would expand because of the substitution of Ca2+ by Eu2+ ions, which lead to the change of micro-structure. Therefore, the concentration quenching point could be enhanced, and the emission intensity reached a maximum at 37 mol% where the solid solubility of Eu2+ ions was saturated. With a further increase in the Eu2+ doping level, the crystal structure started to disintegrate and the volume of the unit cell decreased, which caused the supersaturation of Eu2+ concentration; therefore, the concentration quenching occurred and the emission intensity began to decrease. Due to the said variation of the lattice, the CaSi2O2N2 host could allow more amount of Eu2+ doping than that of other oxynitride hosts, indicating the possibility of higher emission intensity. As a result, the external quantum efficiency of the high-doping sample (37 mol%) was 2.47 times than that of the low-doping sample (5 mol%). Such an eye-catching improvement significantly enhanced the feasibility of this phosphor for application to the pc-WLEDs.
The pc-WLEDs were fabricated by the blue LED chips, Ca0.63Si2O2N2:0.37Eu2+ and Ca1.97Si5N8:0.03Eu2+ phosphors. The effects of phosphor configurations and the reflective index of remote layers on optical characteristics of pc-WLEDs were investigated. Under 350 mA, the results demonstrated that the luminous efficiency and luminous power of pc-WLEDs utilizing the Y down/ R up type (red phosphor layer was above yellow phosphor layer) phosphor configuration and the step index (step-refractive index) remote configuration were 20% and 21.4% respectively higher than those of pc-WLEDs utilizing the Mixed Type (red and yellow phosphors mixed together) phosphor configuration and the silicone gel as remote layers. The luminous efficiency, luminous power, C.I.E. coordinates, correlated color temperature (CCT), and CRI of the former pc-WLED were 32.58 lm/W, 146.19 mW, (0.3217, 0.2704), 6401 K, and 78, respectively.
[1] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Applied Physics A: Materials Science & Processing, 64, pp. 417-418 (1997).
[2] K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor,” Optics Letters, 29, pp. 2001-2003 (2004).
[3] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technology Letters, 17, pp. 1160-1162 (2005).
[4] Y. Liu, X. Zhang, Z. Hao, W. Lu, X. Liu, X. J. Wang, and J. Zhang, “Crystal structure and luminescence properties of (Ca2.94-xLuxCe0.06)(Sc2-yMgy)Si3O12 phosphors for white LEDs with excellent colour rendering and high luminous efficiency,” Journal of Physics D: Applied Physics, 44, pp. 075402 (2011).
[5] Y.Shimizu, K.Sakano, Y.Noguchi, and T.Moriguchi, “Light emitting device having a nitride compound semiconducor and a phosphor containing a garnet fluorescent material,” United States Patent:5998925 (1997).
[6] 劉如熹、劉宇桓,發光二極體用氧氮螢光粉介紹,全華科技 (2006).
[7] 楊俊英,電子產業用螢光材料之調查,工研院,7 (1992).
[8] S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” Applied Physics Letters, 92, pp. 143309 (2008).
[9] Y. Shuai, Y.Z. He, N. T. Tran, and F. G. Shi, “Angular CCT Uniformity of Phosphor Converted White LEDs: Effects of Phosphor Materials and Packaging Structures,” IEEE Photonics Technology Letters, 23, pp. 137-139 (2011).
[10] R. Y. Yu, S. Z. Jin, S. Y. Cen, and P. Liang, “Effect of the Phosphor Geometry on the Luminous Flux of Phosphor-Converted Light-Emitting Diodes,” IEEE Photonics Technology Letters, 22, pp. 1765-1767 (2010).
[11] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic Phosphor Size Dependence of Luminous Efficacy for Typical White LED Emitters,” IEEE Photonics Technology Letters, 23, pp. 552-554 (2011).
[12] B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” Journal of The Electrochemical Society, 159, pp. J96-J106 (2012).
[13] Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Applied Optics, 49, pp. 247-257 (2010).
[14] J. P. You, Y.-H. Lin, N. T. Tran, and F. G. Shi, “Phosphor Concentration Effects on Optothermal Characteristics of Phosphor Converted White Light-Emitting Diodes,” Journal of Electronic Packaging, 132, pp. 031010-031012 (2010).
[15] N. T. Tran and F. G. Shi, “Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes,” Journal of Lightwave Technology, 26, pp. 3556-3559 (2008).
[16] Z.-Y. Liu, S. Liu, K. Wang, and X.-B. Luo, “Studies on Optical Consistency of White LEDs Affected by Phosphor Thickness and Concentration Using Optical Simulation,” IEEE Transactions on Components and Packaging Techologies, 33, pp. 680-687 (2010).
[17] C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, “The Impact of Inhomogeneities in the Phosphor Distribution on the Device Performance of Phosphor-Converted High-Power White LED Light Sources,” Journal of Lightwave Technology, 28, pp. 3226-3232 (2010).
[18] C.-C. Tsai, J. Wang, M.-H. Chen, Y.-C. Hsu, Y.-J. Lin, C.-W. Lee, S.-B. Huang, H.-L. Hu, and W.-H. Cheng, “Investigation of Ce:YAG Doping Effect on Thermal Aging for High-Power Phosphor-Converted White-Light-Emitting Diodes,” IEEE Transactions on Device and Materials Reliability, 9, pp. 367-370 (2009).
[19] N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED,” Journal of Lightwave Technology, 27, pp. 5145-5149 (2009).
[20] C. Sommer, J. R. Krenn, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and F. P. Wenzl, “The Effect of the Phosphor Particle Sizes on the Angular Homogeneity of Phosphor-Converted High-Power White LED Light Sources,” IEEE Journal of Selected Topics in Quantum Electronics, 15, pp. 1181-1188 (2009).
[21] S. C. Huang, J. K. Wu, and W.-J. Hsu, “Particle Size Effect on the Packaging Performance of YAG:Ce Phosphors in White LEDs,” International of Journal Applied Ceramic Technology, 6, pp. 465-469 (2009).
[22] T. Fukui, K. Kamon, J. Takeshita, H. Hayashi, T. Miyachi, Y. Uchida, S. Kurai, and T. Taguchi, “Superior Illuminant Characteristics of Color Rendering and Luminous Efficacy in Multilayered Phosphor Conversion White Light Sources Excited by Near-Ultraviolet Light-Emitting Diodes,” Japanese Journal of Applied Physics, 48, pp. 112101 (2009).
[23] Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light-Emitting Diodes with Multi-Phosphor Layers,” Japanese Journal of Applied Physics, 49, pp. 100203 (2010).
[24] Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Optics Letters, 34, pp. 1-3 (2009).
[25] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Optics Express, 18, pp. 5055-5060 (2010).
[26] 劉如熹、許育賓、徐大正、丁逸聖、林群哲、解榮軍、廣琦尚登、黃振東、陳海英、肖國瑋、蘇宏元,白光發光二極體製作 技術-由晶粒金屬化至封裝,全華圖書 (2008).
[27] 蘇勉曾、吳世康,發光材料,全華科技,第四卷,1-39 (2004).
[28] 林麗玉,奈米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性研究, 國立交通大學應用化學研究所碩士論文 (2000).
[29] A. H. Kitai, “Visible luminescence-Solid state materials &applications,” Chapman&Hall:London (1992).
[30] R. A. Swalin, “Thermodynamics of Solids,” John Wiley & Sons, pp. 335 (1972).
[31] D. Dimova-Malinovska, N. Tzenov, M. Tzolov, and L.Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Althin films,” Materials Science and Engineering: B, 52, pp. 59-62 (1998).
[32] R. C. Ropp, “Luminescence and solid state.,” Elsevier Science Publishers, B. V. The Netherlands (1991).
[33] G. Blasse, and B. Grabmaier, “Luminescent materials,” Springer-Verlag, Berlin (1994).
[34] 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華科技 (2005).
[35] S. H. M. Z. Pan, A. Loper, V. King, B. H. Long and W. E. Collins, Applied Physics Letters, 77, pp. 4688-4692 (1995).
[36] 曹正樸,基本材料科學,台灣商務印書館股份有限公司,台北,民64。
[37] E. F. Schubert, “LIGHT-EMITTING DIODES.” New York: Cambridge University (2006).
[38] 林蘇逸,高演色性白光發光二極體之研究,國立臺灣大學電機資訊學院光電工程學研究所碩士論文 (2007).
[39] I. Ashdown, “Radiosity: A Programmer's Perspective” John Wiley & Sons, pp. 14-27 (2002).
[40] H. A. Höppe, F. Stadler, O. Oeckler, and W. Schnick, "Ca[Si2O2N2]—A Novel Layer Silicate," Angewandte Chemie International Edition, 43, pp. 5540-5542 (2004).
[41] Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, "Luminescence Properties of Eu2+-Activated Alkaline-Earth Silicon-Oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors," Chemistry of Materials, 17, pp. 3242-3248 (2005).
[42] Y. Q. Li, G. de With, and H. T. Hintzen, "Luminescence of a new class of UV-blue-emitting phosphors MSi2O2-δN2+2/3δ:Ce3+ (M = Ca, Sr, Ba)," Journal of Materials Chemistry, 15, pp. 4492-4496 (2005).
[43] P. Schmidt, A. Tuecks, H. Bechtel, D. Wiechert, R. Mueller-Mach, G. Mueller, and W. Schnick, "Layered oxonitrido silicate (SiON) phosphors for high power LEDs," Proc. SPIE 7058, Eighth International Conference on Solid State Lighting, pp. 70580L-70580L (2008).
[44] M. Wang, J. Zhang, X. Zhang, Y. Luo, X. Ren, S. Lu, X. Liu, and X. Wang, "Photoluminescent properties of yellow emitting Ca1-xEuxSi2O2−δN2+2δ/3 phosphors for white light-emitting diodes," Journal of Physics D: Applied Physics, 41, pp. 205103 (2008).
[45] M. Zhang, J. Wang, Z. Zhang, Q. Zhang, and Q. Su, "A tunable green alkaline-earth silicon-oxynitride solid solution (Ca1−xSrx)Si2O2N2:Eu2+ and its application in LED," Applied Physics B, 93, pp. 829-835 (2008).
[46] Y. Gu, Q. Zhang, Y. Li, H. Wang, and R.-J. Xie, "Enhanced emission from CaSi2O2N2:Eu2+ phosphors by doping with Y3+ ions," Materials Letters, 63, pp. 1448-1450 (2009).
[47] X. Song, R. Fu, S. Agathopoulos, H. He, X. Zhao, and S. Zhang, "Photoluminescence properties of Eu2+-activated CaSi2O2N2: Redshift and concentration quenching," Journal of Applied Physics, 106, pp. 033103-033105 (2009).
[48] V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, and A. Meijerink, "Color Point Tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for White Light LEDs," Chemistry of Materials, 21, pp. 316-325 (2008).
[49] L. Yang, X. Xu, L. Hao, X. Yang, J. Tang, and R. Xie, "Photoluminescence of lanthanide-doped CaSi2O2N2 phosphors and the energy-level diagram of lanthanide ions in CaSi2O2N2," Optical Materials, 33, pp. 1695-1699 (2011).
[50] L. X. Yang, X. Xu, L. Y. Hao, Y. F. Wang, L. J. Yin, X. F. Yang, W. He, and Q. X. Li, "Optimization mechanism of CaSi2O2N2: Eu2+ phosphor by La3+ ion doping," Journal of Physics D: Applied Physics, 44, pp. 355403 (2011).
[51] C. H. Hsu, B. M. Cheng, and C. H. Lu, "Photoluminescent Properties and Energy Transfer Mechanism of Color-Tunable CaSi2O2N2:Ce3+, Eu2+ Phosphors," Journal of the American Ceramic Society, 94, pp. 2878-2883 (2011).
[52] Y. Lu, G. Shi, Q. Zhang, H. Wang, and Y. Li, "Photoluminescence properties of Eu2+ and Mg2+ co-doped CaSi2O2N2 phosphor for white light LEDs," Ceramics International, 38, pp. 3427-3433 (2012).
[53] Y. Y. Ma, F. Xiao, S. Ye, Q. Y. Zhang, and Z. H. Jiang, "The Effect of Zinc Acetate Dihydrate on Morphology and Luminescence Properties of CaSi2O2N2:Eu2+ Phosphor," Journal of the American Ceramic Society, 96, pp. 2238-2244 (2013).
[54] Y. Q. Li, G. de With, and H. T. Hintzen, "Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M=Ca, Sr, Ba) materials," Journal of Luminescence, 116, pp. 107-116 (2006).
[55] Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de Witha, and H.T. Hintzen, "Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors," Journal of Alloys and Compounds, 417, pp. 273-279 (2006).
[56] X. Piao, T. Horikawa, H. Hanzawa, and K.-i. Machida, "Preparation of (Sr1−xCax)2Si5N8 :Eu2+ solid solutions and their luminescence properties," Journal of The Electrochemical Society, 153, pp. H232-H235 (2006).
[57] C. J. Duan, W. M. Otten, A. C. A. Delsing, and H. T. Hintzen, "Preparation and photoluminescence properties of Mn2+-activated M2Si5N8 (M=Ca, Sr, Ba) phosphors," Journal of Solid State Chemistry, 181, pp. 751-757 (2008).
[58] X. D. Wei, L. Y. Cai, F. C. Lu, X. L. Chen, X. Y. Chen, and Q. L. Liu, "Structure and luminescence of Ca2Si5N8:Eu2+ phosphor for warm white light-emitting diodes," Chinese Physics B, 18, pp. 3555 (2009).
[59] H. L. Li, R. J. Xie, N. Hirosaki, T. Takeda, and G. H. Zhou, "Synthesis and luminescence properties of orange-red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) light-emitting diode conversion phosphors by a simple nitridation of MSi2," International Journal of Applied Ceramic Technology, 6, pp. 459-464 (2009).
[60] C. Chen, W. Chen, B. Rainwater, L. Liu, H. Zhang, Y. Liu, X. Guoa, J. Zhoua, and E. Xie, "M2Si5N8:Eu2+-based (M=Ca, Sr, Ba) red-emitting phosphors fabricated by nitrate reduction process," Optical Materials, 33, pp. 1585-1590 (2011).
[61] K. Daiki, K. Hyo Sung, H. Takashi, I. Masahiro, and M. Ken-ichi, "Luminescence properties of M2Si5N8 :Ce3+ (M = Ca, Sr, Ba) mixed nitrides prepared by metal hydrides as starting materials," Journal of Physics: Conference Series, 379, pp. 012015 (2012).
[62] O. M. ten Kate, Z. Zhang, P. Dorenbos, H. T. Hintzen, and E. van der Kolk, "4f and 5d energy levels of the divalent and trivalent lanthanide ions in M2Si5N8 (M=Ca, Sr, Ba)," Journal of Solid State Chemistry, 197, pp. 209-217 (2013).
[63] 郭弘毅,釔鋁石榴石結構螢光粉之光學性質及其應用於提升白光發光二極體之演色
性,成功大學電機工程學系碩士論文 (2012).
[64] L. Yuan Qiang, H. Naoto, X. Rong-Jun, and M. Mamoru, "Crystal, electronic and luminescence properties of Eu2+-doped Sr2Al2−xSi1+ xO7−xNx," Science and Technology of Advanced Materials, 8, pp. 607 (2007).
[65] R. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallographica Section A, 32, pp. 751-767 (1976).
[66] 張鈞皓,綠色能源磷酸鹽類螢光材料之開發及其發光特性與應用性之探討,成功大學電機工程學系碩士論文 (2010).
[67] C. Guo, B. Li, Y. He, and H. Cui, "High pressure effect on the luminescence spectra of Eu3+ in stoichiometric host microcrystals," Journal of Luminescence, 48-49, pp. 489-493 (1991).
[68] J. A. Alonso, F. Rivillas, M. J. Martı́nez-Lope, and V. Pomjakushin, "Preparation and structural study from neutron diffraction data of R2MoO6 (R=Dy, Ho, Er, Tm, Yb, Y)," Journal of Solid State Chemistry, 177, pp. 2470-2476 (2004).
[69] K. Deng, T. Gong, Y. Chen, C. Duan, and M. Yin, "Efficient red-emitting phosphor for near-ultraviolet-based solid-state lighting," Opt. Lett., 36, pp. 4470-4472 (2011).
[70] Y. Huang, Z. Jiang, and W. Schwieger, "A vibrational spectroscopic study of kanemite," Microporous and Mesoporous Materials, 26, pp. 215-219 (1998).
[71] D. L. Dexter, "A Theory of Sensitized Luminescence in Solids," The Journal of Chemical Physics, 21, pp. 836-850 (1953).
[72] L. G. Van Uitert, "Characterization of Energy Transfer Interactions between Rare Earth Ions," Journal of The Electrochemical Society, 114, pp. 1048-1053 (1967).
[73] L. Ozawa and P. M. Jaffe, "The Mechanism of the Emission Color Shift with Activator Concentration in +3 Activated Phosphors," Journal of The Electrochemical Society, 118, pp. 1678-1679 (1971).
[74] J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, and H. L. Park, "Temperature-dependent emission spectra of M2SiO4:Eu2+ (M=Ca, Sr, Ba) phosphors for green and greenish white LEDs," Solid State Communications, 133, pp. 445-448 (2005).
[75] Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, "The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications," Opt. Express, 19, pp. 6303-6311 (2011).
[76] C. M. Tan, B. K. Eric Chen, G. Xu, and Y. J. Liu, “Analysis of humidity effects on the degradation of high-power white LEDs,” Microelectronics Reliability, 49, pp. 1226-1230 (2009).
[77] 方盈倩,開發照明用螢光體與螢光材料分析,成功大學電機工程學系博士論文 (2011).
校內:2018-08-09公開