簡易檢索 / 詳目顯示

研究生: 邱銘達
Chiou, Ming-Da
論文名稱: 台灣海域天文潮與颱風暴潮之特性與模擬
Characteristic and numerical simulation of astronomic tide and storm surge in Taiwan water
指導教授: 高家俊
Kao, Chia Chuen
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 135
中文關鍵詞: 天文潮暴潮
外文關鍵詞: astronomical tide, storm surge, POM
相關次數: 點閱:85下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對應用海洋數值模式來模擬區域性的水動力行為如潮汐或暴潮,模式的開邊界條件及表面驅動力條件是用以驅動數值模式的必要條件。本文建立一個可以用來模擬潮汐及暴潮的海洋數值模式系統,此數值模式系統的開邊界條件直接與全球潮汐模式結合,可以方便的模擬全球任何一個計算區域的潮汐資料。當引用外部表面驅動力邊界條件如風場及氣壓場來模擬風驅流或暴潮時,取得的風場及氣壓場之時間步長及空間步長勢必得先進行內插以匹配海洋模式的配置。其中,颱風為特殊且強烈的天氣系統,乃造成海岸災害的一個主要因素。然而在使用傳統線性內插法進行風場及氣壓場內插時,往往會破壞颱風的架構,於模式計算區域中形成二個較弱且以消失/出現的型態移動。為解決此一問題,本文發展一套可以考慮颱風移動特性的內插方法(pathway interpolation scheme),且所需計算量與傳統直接內插方法相近。
    實際應用之前,本文設置一系列的數值試驗來測試模式的敏感性並決定模式系統中所需使用的設置條件。從試驗結果可以看出,即使單純的僅計算天文潮的部份,模式使用二維與三維的計算方式在台灣海峽中可以產生的差異達50公分。此外,考慮潮汐與暴潮分開計算或合併計算時所產生的差異亦可佔最大暴潮偏差量的12%。最後,測試本文所提出的考慮颱風移動特性的內插方法,結果顯示不論是應用在北海(North Sea)的暴風(Storm) 或是亞洲的颱風(Typhoon),本文所提出的考慮颱風移動特性的內插方法均可以有效的改善傳統線性內插法後風場及氣壓場的不合理現象,且實際應用於推算暴潮時,亦可大幅降低使用傳統內插方法所產生的誤差。
    模式經測試完成之後,實際模擬潮波進入台灣海峽之後,受台灣海峽的地形影響所產生的特性。從文獻上可知,M2半日潮的振幅在台灣海峽中段達最大的原因乃與入、反射疊加所形成的駐波現象有關。本文進一步從M2半日潮的相位分佈特性來討論台灣海峽的M2分潮組成型態。結果發現,M2分潮的組成並非單純由入、反射所形成,勢必存在著一個向北傳遞的M2分潮來源由台灣海峽南端傳入台灣海峽之中。從實測資料與模式模擬結果均可發現此一M2分潮來源的存在。此外,本文亦藉由分析淺水分潮的特性做進一步的討論。由於淺水分潮主要在台灣海峽內因為水深變淺而形成,因此,在台灣海峽內的M4淺水分潮可以視為以Kelvin wave的形式入反射疊加且形成駐波現象,進一步由M4的相位分佈,可以發現M4淺水分潮在台灣峽內有二處位置形成無潮點。
    最後在暴潮的模擬上,本文將九大類型的颱風各選定一個颱風案例來進行暴潮的模擬。從這九個案例討論台灣沿岸的颱風暴潮的特性,分析結果顯示台灣海岸因為颱風所引起的暴潮偏差量的最大值均在颱風中心附近,並且以倒氣壓計效應為主。

    The open lateral boundaries and surface boundary fields are the necessary forcing input to the numerical ocean model. A numerical model system has been integrated to simulate the tidally and meteorologically driven hydrodynamics in a very conveniently way to configure for any region of the earth. The hydrodynamics are driven by global astronomical tidal model at the open lateral boundaries. At the surface boundary, if wind and air pressure fields are prescribed, the data downscaling process is necessary to generate the same grid size and time step as ocean model. Typhoons, strong wind and low air pressure, is the major factor to cause the coastal hazardous. However, the traditional linear interpolate scheme of meteorological data downscaling will destroy the structure of typhoon. After applying the traditional linear interpolation to the data downscaling, the typhoon should go as disappear/appear. In order to avoid this situation, a storm pathway downscaling scheme is proposed to interpolate meteorological fields to fit the computational grid system.
    In order to validate the present model system, a series of numerical experiments were adopted to demonstrate the effect of the model results by downscaling method, two or three dimensional simulations and the interaction of tide and storm surge. The experimental results show the maximum tidal level difference over Taiwan Strait between two dimensional runs and three dimensional runs can be about 50 cm. The interaction of tide and storm surge is about 12 % of maximum storm surge deviations. Final, the storm event in North Sea and typhoon event over Taiwan water are used to exam the presented downscaling method. The results show that the presented downscaling method could downscale the meteorological fields in keeping with physical sense.
    The validated model system is used to simulate the tidal propagation in Taiwan Strait. The references indicate that the amplitude of semidiurnal tide M2 has maximum values in the middle of Taiwan Strait is due to consist of incident and reflected M2 tides. In present study, the characteristics of co-phase distribution of M2 tide in Taiwan Strait is used to discuss consists of M2 tide. We found that, there must exist a third M2 source tide propagated from south of Taiwan Strait into Taiwan Strait then the co-phase of consist of incident, reflected and northward propagated M2 tides will satisfy the measurements along Taiwan Coast. Furthermore, the shallow water constituents’ results are used to discuss the tidal propagation in the Taiwan Strait. Due to the shallow water constituents are generated inside the Taiwan Strait, the constituent M4 is only consist of incident and reflected Kelvin waves. Without the third source of M4 constituent, the co-phase of M4 over Taiwan Strait shows two amphidromic points clearly.
    The model system is also used to simulate the storm surges over Taiwan water. Nine typhoon cases corresponding to nine tracks have been selected to simulate the storm surge deviations around the coastal of Taiwan. The maximum storm surge deviations around the coastal of Taiwan during each typhoon case are then represents.

    Abstract I 摘要 III Contents V Table contents VII Figure contents VIII Symbols XV Chapter 1 Introduction 1 1.1 Background 1 1.2 Goal and objective 3 1.3 Research overview 4 Chapter 2 Astronomical tide and storm surge modeling system 7 2.1 Princeton ocean model 9 2.2 Global tidal model 15 2.3 Lateral open boundary conditions 19 2.4 Surface boundary conditions 20 Chapter 3 Sensitivity study of astronomical tide and storm surge simulations 27 3.1 Study area 27 3.2 Ekman effect 28 3.3 Interaction of tide and storm surge 36 Chapter 4 Astronomical tide simulations in Taiwan water 47 4.1 Model quality astronomic tidal elevation 47 4.2 The propagation of M2 tide over Taiwan Strait 56 4.3 The shallow water constituents 65 4.4 Simulation results and discussion 69 Chapter 5 Storm surge simulations 85 5.1 Meteorological data downscaling 85 5.2 Model quality storm surge simulation 101 5.3 Selection of typhoon cases 108 5.4 Storm surge simulations 117 Chapter 6 Conclusions 124 References 127

    [1] Amin, M., 1993, The mutual influence of tidal constituents in the presence of bottom stress. Estuarine, Coastal and Shelf Science, vol. 10, pp. 625-633.
    [2] Andersen, O. B., 1999, Shallow water tides in the northwest European shelf region from TOPEX/POSEIDON altimetry. Journal of Geophysical research, vol. 104, pp. 7729-7741.
    [3] Blumberg, A. F., and G. L. Mellor, 1987, A description of a three-dimensional coastal ocean circulation model, In Three-Dimensional Coastal Ocean Models, N. S. Heaps(Ed.), pp. 1-16, American Geophysical Union, Washington, DC,.
    [4] Burling, C. B., C. B. Pattiaratchi and G. N. Ivey, 2003, The tidal regime of Shark Bay, Western Australia. Estuarine Coastal and Shelf Science, vol. 57, pp. 725-735.
    [5] Bowden, K. F., 1983, Physical oceanography of coastal waters. Ellis Horwood Ltd., pp.162-184
    [6] Centurioni, L.R., P.P. Niiler and D.-K. Lee, 2004, Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. Journal of Physical Oceanography, vol. 34, pp. 113-121
    [7] Centurioni, L.R., P.P. Niiler, Y.Y. Kim, V.A. Sheremet and D.K. Lee, 2007, Near surface dispersion of particles in the South China Sea. In: Lgrangian analysis and prediction of coastal and ocean dynamics, A. Griffa, A. D. Kirwan, A. J. Mariano, T. Özgökmen, and T. Rossby Eds. Cambridge University Press.
    [8] Chen, X. Z., 1983, On the distributions of tidal currents in the Taiwan Strait. Marine Science Bulletin, vol.2, pp. 16-24.
    [9] Chien, H, J.-L.Chen, C. C. Kao, 2005, The applications of short-time rotary spectral analysis to the drifters’ data in the Western Pacific. Proceedings of 10th WOM, APEC, Oct. 16 2005, Jakarta Indonesia, pp. B1.
    [10] Chuang, W.-S., 1985, Dynamics of subtidal flow in the Taiwan Strait. Journal of the Oceanographical Society of Japan, vol. 41, pp. 65-72.
    [11] Danard M., A. Munro and T. Murty, 2006, Storm Surge Hazard in Canada. Natural Hazards, vol. 28, pp. 407-431.
    [12] Dean, R. G. and R. A. Dalrymple, 1991, Reflection and transmission past an abrupt transition. pp. 141–144. In Water Wave Mechanics for Engineers and Scientists, Section 5.5, World Scientific Publishing Co. Pte. Ltd., Singapore, 353 pp.
    [13] Dolata, L.F., E. Roeckner, Behr H., 1983. Prognostic storm surge simulation with a combined meteorological/oceanographic model. In: North Sea Dynamics, Springer Berlin/Heidelberg. J. Sündermann, W. Lenz (Eds.). pp. 266–278.
    [14] Denham, C. R., 2006, SeaGrid Orthogonal Grid Maker – Construct and modify orthogonal grids in Matlab, suitable for oceanographic modeling.” the web site of scientific software, http://woodshole.er.usgs.gov/staffpages/ cdenham/public_html/
    [15] Egbert, G. D. and S. Y. Erofeeva, 2002, Efficient inverse modelling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, vol. 19, N2.
    [16] Egbert, G. D., A. Bennett and M. Foreman, 1994, TOPEX/Poseidon tides estimated using a global inverse model. Journal of Geophysical Research, vol. 99, No C12, pp. 24,821 - 24, 852
    [17] Fang, G. H., J. F. Yang and X. C. Zhao, 1985, A numerical model for tides and tidal currents in the Taiwan Strait. Acta Oceanologica Sinica, vol.7, pp. 12-19.
    [18] Fanjul, E. A., B. P. Gomez and I. R. Sanchez-Arevalo, 1997, A description of the tides in the eastern north Atlantic. Progress in Oceanography, vol. 40, pp. 217-244.
    [19] Feser, F., R. Weisse, H. von Storch, 2001, Multi-decadal atmospheric modeling for Europe yields multi-purpose data. Eos Transactions American Geophysical Union, vol. 82, pp. 305-305.
    [20] Flather, R.A., J.A. Smith, J.D. Richards, C. Bell, D.L. Blackman, 1998, Direct estimates of extreme surge elevation from a 40 year numerical model simulation and from observations. Global Atmosphere and Ocean System, vol. 6, pp. 165–176.
    [21] Graham, H.E. and D.E. Nunn, 1959, Meteorological conditions pertinent to standard project hurricane. Atlantic and Gulf Coasts of United States, National Hurricane Research Project, Report No. 3, US Weather Service.
    [22] Gerritsen, H., A.C. Bijlsma, 1988, Modeling of tidal and wind-driven flow: The Dutch Continental Shelf Model. In: Computer Modelling in Ocean Engineering, Balkema, Rotterdam. B.A. Schrefler, O.C. Zienkiewicz (Eds). pp. 331–338.
    [23] Gönnert, G., S.K. Dube, T. Murty, W. Siefert, 2001, Global storm surges: theory, observations and applications. Boyens & Co, Heide.
    [24] Heaps, N. S., 1983, Storm surge, 1967–1982. Geophysical Journal of the Royal Astronomical Society, 74, pp. 331–367.
    [25] van Aken, H. M., 2007, The oceanic thermohaline circulation: an introduction. Springer, pp. 38-41.
    [26] Howrath, M. J. and D. T. Pugh, 1983: Observations of tides over the continental shelf of northwest Europe, in Physical Oceanography of Coastal and Shelf Seas. edited by D. John, Elsevier, New York, pp. 135-195.
    [27] Huang, Z.-Y. and H.-S. Yu, 2003, Morphology and geologic implications of Penghu Channel off southwest. Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, vol. 14, pp. 469-485.
    [28] Hulscher, S. L.M. H., 1996, Tidal-induced large-scale regular bed form patterns in a three-dimensional shallow water model, Jounrnal of Geophysical Research, vol. 101 C9, pp. 20727-20744.
    [29] Hwung, H.-H., C.-L. Tsai and C.-C. Wu, 1986, Studies on the correlation of tidal elevation changes along the western coastline of Taiwan. Proceedings of Coastal Engineering, Taipei, Taiwan, 1986, 293–305.
    [30] IPCC, 2001, Climate Change 2001—The Scientific Basis, Chapter 10. Cambridge University Press.
    [31] Jan, S., Y. H. Wang, S. Y. Chao and D.-P. Wang, 2001, Development of a nowcast system for the Taiwan Strait (TSNOW): Numerical simulation of barotropic tides. Journal of Ocean and Polar Research, vol. 23, pp. 195-203.
    [32] Jan, S., J. Wang, C.-S. Chen and S. Y. Chao, 2002, Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, vol. 35, pp. 249-268.
    [33] Jan, S., C.-S. Chen and J. Wang, 2002, Transition of tidal waves from the east to south China seas over Taiwan Strait: Influence of the abrupt step in the topography. Journal of Oceanography, vol. 58, pp. 837-850.
    [34] Jan, S., C.-S. Chen, J. Wang and S.-Y. Chao, 2004, The anomalous amplification of M2 tide in the Taiwan Strait, Geophysical Research Letters, vol. 31, L07308.
    [35] Jelensnianski, C.P., 1965, A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf, Monthly Weather Review Vol.93, 6, pp.343-358
    [36] Kauker, F., H. Langenberg, 2000, Two models for the climate change related development of sea levels in the North Sea - a comparison, Climate Research, vol. 15, pp. 61–67.
    [37] Kuo, A. Y., J. Shen and J. M. Hamrick, 1996, Effect of acceleration on bottom shear stress in tidal estuaries. Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 122, pp. 75-83
    [38] Kwong, S. C. M., A. D. Davies and R. A. Flather, 1997, A three-dimensional model of the principal tides on the European shelf. Progress in Oceanography, vol. 39, pp. 205-262.
    [39] Langenberg, H., A. Pfizenmayer, H. von Storch, J. Sündermann, 1999. Storm-related sea level variations along the North Sea coast: natural variability and anthropogenic change. Continental Shelf Research vol. 19, pp. 821–842.
    [40] Lin, C.-S., S.-Y. Lin, S. Lallemand, N. Lundberg and D. L. Reed, 1998, Digital elevation model offshore Taiwan and its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences, vol. 9, pp. 705-738.
    [41] Lin, M.-C., W.-J. Juang and T.-K. Tsay, 2000, Applications of the mild-slope equation to tidal computations in the Taiwan Strait. Journal of Oceanography, vol. 56, pp. 625-642.
    [42] Lin, M.-C., W.-J. Juang and T.-K. Tsay, 2001, Anomalous amplifications of semidiurnal tides along the west coast of Taiwan. Ocean Engineering, vol. 28, pp. 1171-1198.
    [43] Liu, W.-C., M.-H. Hsu and C.-F. Wang, 2003, Modeling of flow resistance in mangrove swamp at mouth of tidal Keeling River, Taiwan. Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 129, pp. 86-92.
    [44] Liu, W.-J., 1996, Tides in Taiwan. Wansen, Taipei, 96 pp.
    [45] Lynch, D.R., 1983, Progress in hydrodynamic modelling, review of U.S. contributions, 1972-9182, Reviews of Geophysics and Space Physics, Vol. 21, pp. 741-754.
    [46] Matsumoto, K., T. Takanezawa and M. Ooe, 2000, Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan. Journal of Oceanography, Vol. 56, pp. 567 to 581.
    [47] Mellor, G. L., and T. Yamada, 1982, Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, vol. 20, pp. 851 - 875.
    [48] Mellor, G. L. and A. F. Blumberg, 1985, Modeling vertical and horizontal diffusivities with the sigma coordinate system. Monthly Weather Review, vol. 113, pp. 1380-1383.
    [49] Mellor, G. L., 2003, Users guide for a three-dimensional, primitive equation, numerical ocean model. Program in Atmospheric and Oceanic Sciences, Princeton University.
    [50] Pazan, S. E. and P. P. Niiler, 2001, Recovery of Near-Surface Velocity from Undrogued Driffters. Journal of Atmospheric and Oceanic Technology, vol. 18, pp. 476-489.
    [51] Oey, L.-Y., G. L. Mellor, and R. I. Hires, 1985, A three-dimensional simulation of the Hudson-Raritan estuary. Part I: Description of the model and model simulations. Journal of Physical Oceanography, vol. 15, pp. 1676-1692.
    [52] Oey, L.-Y., G. L. Mellor, and R. I. Hires, 1985, A three-dimensional simulation of the Hudson-Raritan estuary. Part II: Comparison with observation. Journal of Physical Oceanography, vol. 15, pp. 1693-1709.
    [53] Parker, B. B. (ed.), 1991, Tidal Hydrodynamics. John Wiley, New York, pp. 237-268
    [54] Pawlowicz, R., B. Beardsley and S. Lentz, 2002, Classical Tidal Harmonic Analysis Including Error Estimates in MATLAB using T_TIDE. Computers and Geosciences, vol. 8, pp.929-937.
    [55] Petersen, M., H. Rohde, 1991, Sturmflut – Diegrossen Fluten an den Kuesten Schleswig - Holsteins und in der Elbe. Karl Wachholtz Verlag, Neumünster.
    [56] Prandle, D., J. Wolf, 1978, The interaction of surge and tide in the North Sea and River Thames. Geophysical Journal International, Vol. 55, No. 1, pp.203-216
    [57] Pugh, D. T. and J. M. Vassie, 1987, Tide, surges and mean sea-level, a handbook for engineers and scientists. John Wiley, New York.
    [58] Qiu, Z. F., J.-Y. Hu and Z. Z. Chen, 2002, Harmonic analysis of multi-days series current data at two anchored stations in the southern Taiwan shoal. Marine Science, vol. 27, pp. 50-53.
    [59] Ramp, S. R., T. Y. Tang, T. F. Duda, J. F. Lynch, A.K. Liu, C.-S. Chiu, F. L. Bahr, H.-R. Kim and Y.-J. Yang, 2004, Internal solitons in the northeastern south China Sea. Part I: sources and deep water propagation. IEEE Journal of Oceanic Engineering, vol. 29, pp. 1157-1181.
    [60] Smagorinsky, J., 1963, General Circulation experiments with the primitive equations I. The basic experiment. Monthly Weather Review, vol. 91, pp. 99-164.
    [61] Soomere, T., J. Engelbrecht, 2004, Extreme elevations and slopes of interacting Kadomtsev-Petviashvili solitions in shallow water. Proceedings of Rogue Waves 2004, Brest, France Oct. 2004.
    [62] Tang, D. L., D. R. Kester, I.-H. Ni, H. Kawamura and H. S. Hong, 2002, Upwelling in the Taiwan Strait during the summer monsoon detected by satellite and shipboard measurements. Remote Sensing of Environment, vol. 83, pp. 457-471.
    [63] Tang, Y.M., R. Grimshaw, B. Sanderson and G. Holland, 1996, A Numerical Study of Storm Surges and Tides, with Application to the North Queensland Coast. Journal of physical oceanography, vol. 26, pp. 2700-2711.
    [64] Ueno, T. (1981) Numerical Computations of the Storm Surges in Tosa Bay. Journal of the Oceanographical Society of Japan, Vol. 37, pp. 61-73.
    [65] Wang, Y.-H., S. Jan and D. P. Wang, 2003, Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999-2001). Estuarine, Coastal and Shelf Science, vol. 57, pp. 193-199.
    [66] Weisse, R., H. von Storch, F. Feser, 2005, Northeast Atlantic and North Sea storminess as simulated by a regional climate model 1958-2001 and comparison with observations. Journal of Climate, vol. 18, pp. 465–479.
    [67] Westerink, J. J. and W.G. Gray, 1991, Progress in surface water modelling. Reviews of Geophysics, Vol. 29, pp. 210-217.
    [68] Woth, K., R. Weisse, H. von Storch, 2006, Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dynamics, vol. 56, pp. 3–15.
    [69] Yanagi, T., 1987, Kelvin wave reflection with phase lag in the Bungo channel. Journal of the oceanographical society of Japan, Vol.43, pp. 377-382.
    [70] Zeng, G.-n., Y.-q. Qi, J.-y. Hu and H.-s. Hong, 2004, Advances in the M2 tide wave research in the Taiwan Strait. Advances in Marine Science, vol. 22, pp. 508-518.
    [71] Zheng, W. Z., F. N. Chen and X. Z. Chen, 1982, Tides and tidal currents in the Taiwan Strait. Journal of Oceanography in Taiwan Strait, vol.1, pp. 1-4.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE