| 研究生: |
侯銘凱 Hou, Ming-Kai |
|---|---|
| 論文名稱: |
低頻主動式功率因數修正電路之設計與實現 Design and Implementation of Low Frequency Active Power Factor Correction Circuits |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 總諧波失真 、梯形波近似電流 、導通參數 、功率因數修正 |
| 外文關鍵詞: | trapezoid current waveform, conduction parameters, total harmonic distortion, power factor correction |
| 相關次數: | 點閱:86 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要著重在低頻主動式功因修正電路的分析與設計。近年來可以發現低頻主動式功因修正電路和高頻主動式功因修正電路相較起來,具有低電磁干擾和低切換損失等優點,且功因修正的性能比起被動式功因修正電路要優良許多。然而就現有的文獻而言,關於低頻主動式功因修正電路之主要的控制參數要如何選擇,及所設計出來的電路其功因修正之性能,卻是有限的。因此本論文在此提出一種利用梯形波近似電流的設計方法;此方法在電路的主要控制參數,亦即開關的導通時間點和導通多久決定之後,即可對電路的總諧波失真和功因做一大致的估測。另外針對電感值的選擇和開關導通參數之間的關係,已詳細推導並研究;設計者可以根據不同應用場合的需求進而選擇適當的導通參數和電感值。藉由理論上的分析,電腦模擬和實驗結果都可驗證本論文所提出方法的有效性。使用本論文所提出的設計方法,設計者可以在選擇電感值和控制參數上節省相當多的時間。
This thesis focuses on the analysis and design of low frequency active power factor correction circuits (LFAPFC). It has been recently reported that LFAPFC has attractive features such as low EMI and low switching loss when compared with high frequency active power factor correction circuits (HFAPFC). Moreover, its performance is better than that of passive power factor correction circuits (PPFC). However, studies on the major control parameters of LFAPFC and their corresponding performance are limited. This thesis proposes a design method that is based on a trapezoid current waveform. Using the proposed method, the output performance such as total harmonics distortion (THD) and power factor (PF) of LFAPFC can be approximately estimated when the major control parameters, i.e., the conduction timing and conduction period of the power switch are determined. In addition, the relationship between the value of the inductor and the conduction parameters of the power switch is derived and investigated. Designers can determine suitable values of conduction parameters and inductors for specific applications. Theoretical analysis, computer simulation, and experimental results demonstrate the effectiveness of the proposed method. Using the proposed method, designers can save considerable time choosing the value of control parameters and inductors.
[1] R. Real, B. Molnar, and N. O. Sokai, “Class E resonant regulate dc/dc power converter: analysis of operation and experiment results at 1.5 MHz,” IEEE Transactions on Power Electronics, vol. 1, no. 2, pp. 111-120, Apr. 1986.
[2] R. Real and A. S. Kislovski, “Telecom power supplies and power quality,” in Proceedings of the IEEE International Telecommunications Energy Conference, pp. 13-21, 1995.
[3] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 749-755, May 2003.
[4] “Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current<16A per phase)”, IEC 1000-3-2 Document, 3rd Edition, 2005.
[5] K. H. Liu, R. Oruganti, and F. C. Lee, “Quasi-resonant converters-Topologies and characteristics,” IEEE Transactions on Power Electronics, vol. 2, no. 1, pp. 62-71, Jan. 1987.
[6] E. Ismail and R. W. Erickson, “A single transistor three phase resonant switch for high quality rectification,” in Proceedings of the IEEE Power Electronics Specialists Conference, pp. 1341-1351, 1992.
[7] G. Hua and F. C. Lee, “Soft-switching techniques in PWM converters,” IEEE Transactions on Industrial Electronics, vol. 42, no. 6, pp. 595-603, Dec. 1995.
[8] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proceedings of the IEEE Power Electronics Specialists Conference, pp. 800-807, 1990.
[9] R. Redl and B. P. Erisman, “Reducing distortion in peak current controlled boost power–factor correctors,” in Proceedings of the IEEE Applied Power Electronics Conference and Exposition, pp. 576-583, 1994.
[10] L. Dixon, “Average current mode control of switching power supplies,” in the Unitrode Applications Handbook(IC 1051), Application note U-140, pp. 3-356-3-369, 1997.
[11] D. Maksimovic, J. Yungtaek, and R. W. Erickson, “Nonlinear carrier control for high-power-factor boost rectifiers,” IEEE Transactions on Power Electronics, vol. 11, no. 4, pp. 578-584, Jul. 1996.
[12] K. M. Smedley and S. Cuk, “One-cycle control of switching converters,” IEEE Transactions on Power Electronics, vol. 10, no. 6, pp. 625-633, Nov. 1995.
[13] J. Sebastian, M. Jaureguizar, and J. Uceda, “An overview of power factor correction in single-phase off-line power supply systems,” in Proceedings of the IEEE International Conference on Industrial Electronics, Control and Instrumentation, pp. 1688-1693, 1994.
[14] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Massachusetts: Kluwer Academic, 2001.
[15] V. Grigore, “Topological issues in single-phase power factor correction,” Ph.D. dissertation, Department of Electrical and Communications Engineering, Helsinki University of Technology, Helsinki, Finland, 2001.
[16] A. R. Prasad, P. D. Ziogas, and S. Manias, “A novel passive waveshaping method for single-phase diode rectifiers,” IEEE Transactions on Industrial Electronics, vol. 37, no. 6, pp. 521-530, Dec. 1990.
[17] M. M. Jovanovic and D. E. Crow, “Merits and limitations of full-bridge rectifier with LC filter in meeting IEC 1000-3-2 harmonic-limit specifications,” IEEE Transactions on Industry Applications, vol. 33, no. 2, pp. 551-557, Mar./Apr. 1997.
[18] I. Suga, M. Kimata, Y. Ohnishi, and R. Uchida, “New switching method for single-phase AC to DC converter,” in Proceedings of the IEEE Power Conversion Conference, pp. 93-98, 1993.
[19] L. Rossetto, G. Spiazzi, and P. Tenti, “Boost PFC with 100Hz switching frequency providing output voltage stabilization and compliance with EMC standards,” IEEE Transactions on Industry Applications, vol. 36, no. 1, pp. 188-193, Jan./Feb. 2000.
[20] G. Spiazzi, E. da Silva Martins, and J. A. Pomilio, “A simple line-frequency commutation cell improving power factor and voltage regulation of rectifiers with passive L–C filter,” in Proceedings of the IEEE Power Electronics Specialists Conference, pp. 724-729, 2001.
[21] J. L. Chen, J. W. Chen, H. C. Chen, Y. C. Chang, C. C. Yang, and C. M. Liaw, “Front-end low-frequency switched-mode rectifier and its control for permanent-magnet synchronous-motor drive,” IEE Proceedings, Electric Power Applications, vol. 152, no. 4, pp. 905-914, July 2005.
[22] S. Buso and G. Spiazzi, “A line-frequency-commutated rectifier complying with IEC 1000-3-2 standard,” IEEE Transactions on Industrial Electronics, vol. 47, no. 3, pp. 501-510, June 2000.
[23] J. A. Pomilio and G. Spiazzi, “A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards,” IEEE Transactions on Power Electronics, vol. 17, no. 6, pp. 963-970, Nov. 2002.
[24] K. K. Sum, “Improved valley-fill passive power factor correction current shaper approaches IEC specification limits,” PCIM Magazine, pp. 42-51, Feb. 1998.
[25] L. H. Dixon, “High power factor pre-regulators for off-line power supplies,” in the Unitrode Power Supply Design Seminar Manual, SEM-700, pp. I2.1-I2.6, 1990.
[26] 陳振偉,具前端轉換器永磁同步馬達驅動系統之建構及操控性能探究,碩士論文,國立清華大學電機工程學系,2005。
[27] 許昀傑,家電產品功因修正電路之設計與實現,碩士論文,國立成功大學電機工程學系,2006。
[28] TCA785 datasheet, SIEMENS Semiconductor Corporation, 1990.