| 研究生: |
李東璟 Lee, Dong-Jing |
|---|---|
| 論文名稱: |
以數位信號處理器完成風力用獨立自激式感應發電機可控整流器與切換自激電容器組之協調控制研究控制研究 Coordination Control between Controllable Converter and Switched Excitation Capacitors of Autonomous Self-excited Induction Generators Using DSP |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 整流器 、數位訊號處理器 、發電機 |
| 外文關鍵詞: | dsp, generator, CONVERTER |
| 相關次數: | 點閱:86 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文發展一套風力用獨立自激式感應發電機之可控整流器及自激電容器切換雙重協調控制策略,以改善風力用感應發電機之輸出電壓及頻率會隨不同轉速及不同負載條件而發生變動的特性。
本論文中,將利用數位信號處理器控制功率級電晶體,將風力用感應發電機之交流電源轉換成穩定之直流電源給直流負載及換流器來產生穩定交流電源輸出。
本文之硬體架構是採用實驗室之2.2 仟瓦感應發電機組及德州儀器公司生產的TMS320F240數位信號處理器來完成實體製作,並採用三相a-b-c軸模型,結合三相感應發電機、可控整流器與可切換電容器組之模型,推導其完整數學模型來完成動態系統模擬,並與實測結果比較,以驗證本論文所提系統之可行性。
The aim of this thesis is to develop a coordination control between controllable converter and switched excitation capacitors for autonomous wind self-excited induction generators because both output voltage and frequency of an autonomous wind induction generator would be inherently affected by random wind speed and connected loads.
In this thesis, the generated AC power source of the studied wind induction generator is converted to a weal regulated DC power source by means of switching power transistors using a digital signal processor (DSP). The controlled DC power source is employed to supply dc loads and inverter which is for producing fixed AC power source.
A laboratory 2.2 kW induction generator driven by a brushless DC motor and a TMS320F240 DSP are practically utilized. Three-phase induction- generator model, three-phase controllable converter model, switched excitation-capacitor model are integrated to form complete system dynamic equations for the purpose of obtaining detailed simulations. It can be concluded from the simulated and experimental results that the proposed wind energy conversion system can be practically applied to the studied wind induction generators under various operating conditions.
[1]S.K. Salman and A.L.J. Teo, “Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator,” IEEE Trans. Power Apparatus and Systems, vol. 18, no. 2, pp. 793-802, 2003.
[2]J.B. Ekanayake, L. Holdsworth, X.-G. Wu, and N. Jenkins, “Dynamic modeling of doubly fed induction generator wind turbines,” IEEE Trans. Power Systems, vol. 18, no. 2, pp. 803 -809, 2003.
[3]Z. Chen, “Compensation Schemes for a SCR Converter in variable Speed Wind Power Systems,” IEEE Trans. Power Apparatus and systems, vol. 19, no. 2, pp. 813-821, 2004.
[4]C. Grantham, D. Sutanto, and B. Mismail, “Steady-state and transient analysis of self-excited induction generators,” IEE Proceedings, Electric Power Applications, vol. 136, no. 2, pp. 61-67, 1989.
[5]K.-E. Hallenius, P. Vas, and J.E. Brown, “The analysis
of a saturated self-excited asynchronous generators,” IEEE Trans. Energy Conversion, vol. 6, no. 2, pp. 336-345, 1991.
[6]T.F. Chan, “Capacitance requirements of self-excited induction generators,” IEEE Trans. Energy Conversion, vol. 8, no. 2, pp. 304-311, 1993.
[7]L. Wang and R.-Y. Deng, “Transient performance of an isolated induction generator under unbalanced excitation capacitors,” IEEE Trans. Energy Conversion, vol. 14, no. 4, pp. 887-893, 1999.
[8]陳和文,獨立自激式感應發電機經受控型換流器供應獨立負載之研製,國立成功大學電機工程研究所碩士論文,民國九十一年五月。
[9]曾祥賓,以數位信號處理器為基礎之風力發電用能量轉換系統,國立成功大學電機工程研究所碩士論文,民國九十二年六月。
[10]T.L. Maguire and A.M. Gole, “Apparatus supplying an isolated dc load from a variable-speed self-excited induction generator,” IEEE Trans. Energy Conversion, vol. 8, no. 3, pp. 468-475, 1993.
[11]I. Alan and T.A. Lipo, “Starter/generator employing resonant-converter-fed induction machine, Part I: Analysis,” IEEE Trans. Aerospace and Electronic Systems, vol. 36, no. 4, pp. 1309-1318, 2000.
[12]I. Alan and T.A. Lipo, “Starter/generator employing resonant-converter-fed induction machine, Part II: Hardware prototype,” IEEE Trans. Aerospace and Electronic Systems, vol. 36, no. 4, pp. 1319-1329, 2000.
[13]H.De. Battista, R.J. Mantz, and C.F. Christiansen, “Dynamical sliding mode power control of wind driven induction generators,” IEEE Trans. Energy Conversion, vol. 15, no. 4, pp. 451-455, 2000.
[14]E. Muljadi, H.L. Hess, and K. Thomas, “Zero sequence method for energy recovery form a variable-speed wind turbine generator,” IEEE Trans. Energy Conversion, vol. 16, no. 1, pp. 99-103, 2001.
[15]R.M. Hilloowala and A.M. Sharaf, “A utility interactive wind energy conversion scheme with an asynchronous DC link using a supplementary control loop,” IEEE Trans. Energy Conversion, vol. 9, pp. 558-563, Sep. 1994.
[16]R.M. Hilloowala and A.M. Sharaf, “A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme,” IEEE Trans. Industry Applications, vol. 32, pp. 57-65, Jan./Feb. 1996.
[17]E.G. Marra and J.A. Pomilio, “Induction-generator-based system providing regulated voltage with constant frequency,” IEEE Trans. Industrial Electronics, vol. 47, pp. 908-914, Aug. 2000.
[18]Y. Nishida and M. Nakaoka, “Simplified predictive instant- taneous current control for single-phase and three-phase and three-phase voltage-fed PFC converters,” IEE Proceedings, vol. 144, pp. 46-52, Nov. 2000.
[19]J. Qian and F.C. Lee, “Voltage-source charge-pump power- factor-correction AC/DC converters,” IEEE Trans. Power Electronics, vol. 14, pp. 350-358, March 1999.
[20]K. Hirachi and M. Nakaoka, “Novel PFC converter suitable for engine-driven generator-interactive three-phase power systems,” IEE Proceedings, Electric Power Applications, vol. 146, pp. 253-260, March 1999.
[21]B.S. Lee, H. Jaehong, P.N. Enjeti, and I.J. Pitel, “A robust three-phase active power-factor-correction and harmonic reduction scheme for high power,” IEEE Trans. Industrial Electronics, vol. 46, pp. 483-494, June 1999.
[22]J.-Y. Lee, Y.-M. Chang and F.-Y. Liu, “A new UPS topology employing a PFC boost rectifier cascaded high-frequency tri-port converter,” IEEE Trans. Industrial Electronics, vol. 46, pp. 803-813, Aug. 1999.
[23]G. Zhu, H. Wei, P. Kornetzky, and I. Batarseh, “Small-signal modeling of a single-switch AC/DC power-factor-correction circuit,” IEEE Trans. Power Electronics, vol. 14, pp. 1142- 1148, Nov. 1999.
[24]Y.K.E. Ho, S.Y.R. Hui, and Y.-S. Lee, “Characterization of single-stage three-phase power-factor-correction circuit using modular single-phase PWM DC-to-DC converters,” IEEE Trans. Power Electronics, vol. 15, pp. 62-71, Jan. 2000.
[25]S. Mobin, E. Hiraki, H. Takano, and M. Nakaoka, “Simulation method for DSP-controlled active PFC high frequency power converters,” IEE Proceedings, Electric Power Applications, vol. 147, pp. 159-166, May 2000.
[26]K.-C. Lee, H.-S. Chei, and B.H. Cho, “Power factor correction converter using delay control,” IEEE Trans. Power Electronics, vol. 15, pp. 626-633, July 2000.
[27]J. Zhou, Z. Lu, Z. Lin, Y. Ren, Z. Qian, and Y. Wang, “Novel sampling algorithm for DSP controlled 2 kW PFC converter,” IEEE Trans. Power Electronics, vol. 16, pp. 217-222, March 2001.
[28]J. Zhang, F.C. Lee, and M.M. Jovanovic, “Novel sampling algorithm for DSP controlled 2 kW PFC converter,” IEEE Trans. Power Electronics, vol. 18, pp. 44-50, Jan. 2003.
[29]王醴,工業電子學,全威圖書有限公司,民國九十一年。
[30]江炫樟,電力電子學,全華科技圖書股份有限公司,民國八十七年。
[31]李隆財、吳金勇,TMS320C240原理與實習,長高企業有限公司,民國八十九年。
[32]龔應時、陳建武、徐永松,TMS320/C24x DSP控制器原理與應用,滄海書局,民國九十年。
[33]TMS320C24x DSP Controllers CPU, System, and Instruction Set, vol. 1, Texas Instruments, 1997.
[34]TMS320C24x DSP Controllers Peripheral Library and Specific Devices, vol. 2, Texas Instruments, 1997.
[35]TMS320C24x DSP Controllers Evaluation Module, Texas Instruments, 1997.