簡易檢索 / 詳目顯示

研究生: 曾麒睿
Tseng, Chi-Jui
論文名稱: 無線電能傳輸系統之諧振網絡特性研究
Study on Resonant Network Characteristics for Wireless Power Transfer System
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 111
中文關鍵詞: 無線電能傳輸系統諧振網絡Qi協定
外文關鍵詞: wireless power transfer system, resonant network, Qi specification
相關次數: 點閱:94下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在針對無線電能傳輸系統中,諧振補償電路之研究,文中先由雙埠網絡概念對發射端諧振架構進行詳細分析,將各網絡架構特性藉由條件分為四種類型,並探討各類型架構的傳輸能力,和變動負載的強健性,此外針對參數設計所改變架構特性簡易分析。對於接收端諧振架構,推導其感應電壓具不受負載變動影響可設計倍率之特性的條件,並探討不同架構,將其操作及參數設計條件整理,而參考Qi協定中規範及考量非理想效應確立繞製的線圈規格及線材,且為利於諧振網絡分析決定由雙線圈為系統耦合結構。最後經由實驗得知,第一類型諧振網絡架構具最好的效率曲線,第三類次之,第二類相較前兩者更低,第四類無法有效傳能,而接收端諧振電路能通過所設計架構及參數,將感應電壓進行調整,故由實驗驗證其推導結果。

    This thesis aims at the research of resonant network in wireless power transfer system. In this thesis, the two-port network concept was first analyzed in detail for the transmitting-side resonant architecture, and the characteristics of each network architecture were divided into four types through conditions, and the transmission capability of the each type architecture as well as the robustness of the variable load were discussed. Beside, the characteristics of the changed architecture and parameter designed were simple analysed. For the receiving-side resonant architecture, the induced voltage had a characteristic that can be designed to be multiplied without being affected by load changes. Different architectures and it’s parameter design conditions were derived and operated. Considering the Qi specification and the non-ideal effects to the winding coil specifications, the dual coil was used as the system coupling structure. Finally, the experiments result show that first type of resonant network architecture had the best efficiency curve, the third type took second place, and the second type was lower than the first two, then the fourth type cannot effectively transfer energy. In addition, the receiving resonant circuit can adjust the induced voltage through the designed structure and parameters. The result was verified by experiments.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究背景 3 1-3 研究方法 10 1-4 論文大綱 11 第二章 感應耦合架構原理與分析 12 2-1 前言 12 2-2 感應耦合傳輸基本原理 12 2-3 感應結構之非理想效應 15 2-3-1 集膚效應 15 2-3-2 近接效應 17 2-4 感應耦合架構等效電路分析 18 2-4-1 耦合結構等效電路模型 19 2-4-2 感應耦合結構之耦合係數 21 2-4-3 感應耦合能力分析 22 2-5 雙線圈感應耦合架構分析 23 第三章 TX端與RX端諧振補償網絡架構分析 26 3-1 前言 26 3-2 雙埠式網絡 26 3-3 TX端諧振補償網絡分析 28 3-3-1 無損TX線圈且無RX端之諧振網絡分析 30 3-3-2 第一類型TX網絡 35 3-3-3 第二類型TX網絡 39 3-3-4 第三類型TX網絡 45 3-3-5 第四類型TX網絡 48 3-3-6 變化TX端網絡 50 3-3-7 有損TX線圈且有RX端之TX端網絡分析 53 3-4 RX端電路架構分析 58 3-4-1 橋式整流電路等效分析 59 3-4-2 RX端諧振補償網絡架構分析 60 第四章 無線電能傳輸系統電路架構 69 4-1 前言 69 4-2 整體系統電路架構 69 4-3 TX端電路架構 70 4-3-1 全橋變流器設計 70 4-3-2 TX端諧振網絡架構設計 74 4-4 耦合架構設計 75 4-4-1 繞製線材的選擇 75 4-4-2 耦合線圈參數規格 77 4-5 RX端電路架構 78 4-5-1 RX端諧振網絡架構設計 79 4-5-2 整流濾波電路 80 4-5-3 電壓調節電路 81 4-6 無線電能傳輸系統設計流程 82 第五章 系統模擬與實驗結果 85 5-1 前言 85 5-2 硬體電路與系統參數 85 5-3 Simplis電路模擬分析 86 5-3-1 TX端諧振電路模擬分析及比較 87 5-3-2 RX端諧振電路模擬分析及比較 91 5-4 系統實驗結果與波形測量分析 93 5-4-1 TX端電路波形量測 93 5-4-2 RX端電路波形量測 96 5-5 實驗討論 98 第六章 結論與未來研究方向 102 6-1 結論 102 6-2 未來研究方向 103 參考文獻 104

    [1]M. Tamura, Y. Naka, K. Murai, and T. Nakata, “Design of a capacitive wireless power transfer system for operation in fresh water,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5873-5884, Dec. 2018.
    [2]J. Dai, S. Hagen, D. C. Ludois, and I. P. Brown, “Synchronous generator brushless field excitation and voltage regulation via capacitive coupling through journal bearings,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3317-3326, Jul. 2017.
    [3]J. Kracek and M. Svanda, “Analysis of capacitive wireless power transfer,” IEEE Access, vol. 7, pp. 26678-26683, Dec. 2018.
    [4]B. Luo, T. Long, L. Guo, R. Dai, R. Mai, and Z. He, “Analysis and design of inductive and capacitive hybrid wireless power transfer system for railway application,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 3034-3042, Mar. 2020.
    [5]F. Lu, H. Zhang, H. Hofmann, and C. C. Mi, “An inductive and capacitive integrated coupler and its LCL compensation circuit design for wireless power transfer,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4903-4913, Apr. 2017.
    [6]J. Dai, and D. C. Ludois, “A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6017-6029, Nov. 2015.
    [7]B. Song, J. Shin, S. Lee, S. Shin, Y. Kim, S. Jeon, and G. Jung, “Design of a high power transfer pickup for on-line electric vehicle,” in Proc. IEEE Int. Elect. Veh. Conf., 2012, pp. 1-4.
    [8]A. Kawamura, G. Kuroda, and C. Zhu, “Experimental results on contact- less power transmission system for the high-speed train,” in Proc. IEEE PESC, 2007, pp. 2779-2784.
    [9]J. Huh, S. Lee, C. Park, G. H. Cho, and C. T. Rim, “High performance inductive power transfer system with narrow rail width for on-line electric vehicles,” in Proc. IEEE ECCE, 2010, pp. 647-651.
    [10]J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
    [11]J. T. Boys, G. A. J. Elliot, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan. 2007.
    [12]P. Sergeant and A. Van Den Bossche, “Inductive coupler for contactless power transmission,” IET Electr. Power Appl., vol. 2, no. 1, pp. 1-7, Jan. 2008.
    [13]M. Mochizuki et al., “Development of seafloor geodetic observation system based on AUV and submarine cable technologies,” in Proc. IEEE Oceans, 2010, pp. 1-4.
    [14]K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with 'universal' inductive interface,” in Proc. IEEE Power Conversion Conf. Record, 2002, pp. 227-232.
    [15]‘‘非接觸式供電搬送系統技術,’’ DAIFUKU官網,2001。Online. Available at: https://www.daifuku.com/tw/solution/technology/wirelesspower/.
    [16]S. Jeong, Y. J. Jang, D. Kum, and M. S. Lee, “Charging automation for electric vehicles: is a smaller battery good for the wireless charging electric vehicles?,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 486-497, Jan. 2019.
    [17]‘‘無線充電,’’ RAZER官網,2020。Online. Available at: https://www.qualcomm.com/solutions/automotive/wevc.
    [18]Heresy,‘‘堪稱黑科技的微型無線 LED 燈:X-BASE,’’ Heresy's Space, 2017。Online. Available at: https://www.qualcomm.com/solutions/automotive/wevc.
    [19]H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 401-413, Feb. 2016.
    [20]R. Goncalves, N. B. Carvalho, and P. Pinho, “Increasing the RFID readability range using wireless power transmission enhancements,” in Proc. WPTC, 2013, pp. 135-138.
    [21]Q. Zhu, Y. Guo, S. Li, L. Wang, and C. Liao, “Segmental switching strategy with zero output pulsation for dynamic ev wireless charging system,” IET Power Electron., vol. 12, no. 6, pp. 1563-1570, Aug. 2019.
    [22]T. V. Theodoropoulos, I. G. Damousis, and A. J. Amditis, “Demand-side management ICT for dynamic wireless EV charging,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6623–6630, Oct. 2016.
    [23]SAE Electric Vehicle Inductive Coupling Recommended Practice, SAE J-1773, Society of Automotive Engineers, Feb. 1995.
    [24]J. Schneider, SAE J2954 Overview and Path Forward, SAE International, Warrendale, Pa, USA, 2013.

    [25]F. Musavi, M. Edington, and W. Eberle, “Wireless power transfer a survey of EV battery charging technologies,” in Proc. IEEE ECCE, 2012, pp. 1804-1810.
    [26]K. Kobayashi, T. Pontefract, Y. Kamiya, and Y. Daisho, “Development and performance evaluation of a non-contact rapid charging Inductive power supply system for electric micro-bus,” in Proc. IEEE Veh. Power Propulsion Conf., 2011, pp 1-6.
    [27]G. Wang, W. Liu, M. Sivaprakasam, J. D. Weiland, and M. S. Humayun, “High efficiency wireless power transmission with digitally configurable stimulation voltage for retinal prosthesis,” in Proc. Neural Engineering, 2007, pp 543-546.
    [28]P. M. Ponce, B. John, D. Schroeder, and W. H. Krautschneider, “Super-capacitors for implantable medical devices with wireless power transmission,” in Proc. Ph.D. Res. Microelectron. Eletron., 2018, pp 241-244.
    [29]K. Agarwal, R. Jegadeesan, Y. X. Guo, and N. V. Thakor, “Wireless Power Transfer Strategies for Implantable Bioelectronics,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, Sep. 1992.
    [30]H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
    [31]P. Raval, D. Kacprzak, and A. P. Hu, “A wireless power transfer system for low power electronics charging applications,” in Proc. IEEE Conf. Ind. Electron. Appl., 2011, pp. 520-525.
    [32]W. Li, Q. Wang, Y. Wang, and J. Kang, “Three-dimensional rotatable omnidirectional MCR WPT systems,” IEEE Trans. Power Electron., vol. 13, no. 2, pp. 256-265, Feb. 2020.
    [33]N. H. Van and C. Seo, “Analytical and experimental investigations of omnidirectional wireless power transfer using a cubic transmitter,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1358-1366, Feb. 2018.
    [34]D. Lin, C. Zhang, and S. Y. R. Hui, “Mathematic analysis of omnidirectional wireless power transfer—Part-II three-dimensional systems,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 613-624, Jan. 2017.
    [35]‘‘Qi Specifications,’’ Wireless Power Consortium, 2018. [Online]. Available at: https://www.wirelesspowerconsortium.com/data/downloadables/2/2/0/5/qi-wireless-power-specification-non-confidential.zip
    [36]A4WP Wireless Power Transfer System Baseline System Specification (BSS) Version 1.3 Annex D, Alliance for Wireless Power, Beaverton, OR, USA, 2013.
    [37]D. Liu, H. Hu, and S. V. Georgakopoulos, “Misalignment sensitivity of strongly coupled wireless power transfer systems,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5509-5519, July 2017.
    [38]D. W. Seo, “Comparative analysis of two- and three-coil wpt systems based on transmission efficiency,” IEEE Access, vol. 7, pp. 151962-151970, 2019.
    [39]S. Alshhawy, A. Barakat, K. Yoshitomi, and R. K. Pokharel, “Separation-misalignment insensitive WPT system using two-plane printed inductors,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 10, pp. 683-686, Oct. 2019.
    [40]Y. Li, R. Mai, L. Lu, T. Lin, Y. Liu, and Z. He, “Analysis and transmitter currents decomposition based control for multiple overlapped transmitters based WPT systems considering cross couplings,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1829-1842, Feb. 2018.
    [41]S. Moon and G. W. Moon, “Wireless power transfer system with an asymmetric four-coil resonator for electric vehicle battery chargers,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 6844-6854, Oct. 2016.
    [42]J. Kim, D. H. Kim, and Y. J. Park, “Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2807-2813, May 2015.
    [43]Y. Yao, Y. Wang, X. Liu, F. Lin, and D. Xu, “A novel parameter tuning method for a double-sided LCL compensated WPT system with better comprehensive performance,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8525-8536, Oct. 2018.
    [44]Y. Lu, D. Qiu, X. Meng, B. Zhang, and S. C. Tang, “S-PS resonant topology of WPT system for implantable spinal cord stimulator,” IET Power Electron., vol. 11, no. 15, pp. 2499-2506, Dec. 2018.
    [45]F. Mastri, M. Mongiardo, G. Monti, L. Corchia, A. Costanzo, and L. Tarricone, “Load–independent inductive resonant WPT links,” in Proc. IEEE RFID-TA, 2019, pp. 1-5.
    [46]A. Costanzo, M. Dionigi, F. Mastri, M. Mongiardo, G. Monti, J. A. Russer, P. Russer, and L. Tarricone, “Conditions for a load-independent operating regime in resonant inductive WPT,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 4, pp. 1066-1076, Apr. 2017.
    [47]J. Zhao, T. Cai, S. Duan, H. Feng, C. Chen, and X. Zhang, “A general design method of primary compensation network for dynamic WPT system maintaining stable transmission power,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8343-8358, Dec. 2016.
    [48]D. Thenathayalan, C. Lee, and J. H. Park, “High-order resonant converter topology with extremely low-coupling contactless transformers,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2347-2361, Mar. 2016.
    [49]J. Lu, G. Zhu, D. Lin, S. C. Wong, and J. Jiang, “Load-independent voltage and current transfer characteristics of high-order resonant network in IPT system,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 7, no. 1, pp. 422-436, Mar. 2019.
    [50]Y. Li, R. Mai, L. Lu, T. Lin, Y. Liu, and Z. He, “Analysis and transmitter currents decomposition based control for multiple overlapped transmitters based WPT systems considering cross couplings,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1829-1842, Feb. 2018.
    [51]L. Jianyu, Y. Nan, and L. Kaiyu, “A novel resonant network for a WPT system with constant output voltage,” in Proc. IEEE Conf. Energy Internet Energy Syst. Integr., 2017, pp. 1-5.
    [52]B. Esteban, M. S. Ahmed, and N. C. Kar, “A comparative study of power supply architectures in wireless EV charging systems,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6408-6422, Nov. 2015.
    [53]E. Abramov, I. Zeltser, and M. M. Peretz, “A network-based approach for modeling resonant capacitive wireless power transfer systems,” CPSS Trans. Power Electron. Appl., vol. 4, no. 1, pp. 19-29, Mar. 2019.
    [54]M. Borage, K. V. Negesh, M. S. Bhatia, and S. Tiwari, “Resonant immittance converter topologies,” IEEE Trans. Ind. Electron., vol. 58, no. 3, pp. 971-978, Mar. 2011.
    [55]A. Khoshsaadat, and J. S. Moghani, “Fifth-order T-type passive resonant tanks tailored for constant current resonant converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 2, pp. 842-853, Feb. 2018.
    [56]S. B. Afzal, M. M. Shabab, and M. A. Razzak, “A combined π- and T-type immittance converter for constant current applications,” in Proc. IEEE ICIEV, 2013, pp. 1-6.
    [57]曾百由,dsPIC數位訊號控制器原理與應用MPLAB C30開發實務,宏友圖書開發股份有限公司,2007年。
    [58]dsPIC30F4011/4012 Data Sheet High Performance Digital Signal Controllers, Microchip inc., 2005.
    [59]謝志仁,應用三線圈式多單元耦合結構於非接觸式饋電軌道系統之研究,國立成功大學電機工程學系碩士論文,2019年。
    [60]蔡明翰,非接觸式電動車動態供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2019年。
    [61]廖芝翊,應用五階變流器激勵源於具分段激發感應耦合結構之非接觸式供電陣列軌道,國立成功大學電機工程學系碩士論文,2018年。
    [62]吳信宏,改良式動態調控機制於電漿設備用阻抗匹配器之研究,國立成功大學電機工程學系碩士論文,2015年。
    [63]TLP350 Datasheet, Toshiba Inc.,2003.
    [64]IXFH26N50Q Datasheet, IXYS Inc., 2003.
    [65]DSEP30-06A Datasheet, IXYS Inc., 2016.

    下載圖示 校內:2023-08-13公開
    校外:2023-08-13公開
    QR CODE