簡易檢索 / 詳目顯示

研究生: 李忠倫
Li, Chung-Lun
論文名稱: 再生能源發電備援系統之能源管理策略
Energy Management Strategy for Renewable Backup Supply
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 108
中文關鍵詞: 再生能源備援系統直流微電網混和能源
外文關鍵詞: Renewable resource, Backup supply system, DC micro-grid, Hybrid power source
相關次數: 點閱:141下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於其他發電方式,再生能源雖然有著永續與環境友善等優點,但其發電量無法持續地穩定供給,因此本研究採用的混合供電之再生能源發電備援系統。藉由電流饋入式全橋隔離型轉換器控制燃料電池的輸出功率,提供微電網穩定的基載能源,並且藉由雙主動式全橋相位移雙向轉換器控制鉛酸蓄電池的雙向功率流動,維持發電端與負載端之供需平衡。然由於蓄電池主要擔任緩衝能量的角色,若基載能源-燃料電池提供的能量與備載需求相差甚遠,在有限的電池容量下將導致蓄電池的工作時間大幅降低,本文因此提出燃料電池與鉛酸蓄電池的功率分配策略來設定燃料電池的輸出功率,以降低蓄電池的負荷。本文並提出直流匯流排能量管理機制,協調蓄電池的輸出功率以維持發電與負載之間的功率平衡;另一方面,利用鉛酸蓄電池充電狀態(state of charge, SOC)的調節機制,避免蓄電池深度充放電。本研究透過CAN-Bus通訊介面整合控制450W之基載燃料電池系統及1.5kW之儲能電池系統,經由模擬及實測驗證本文所提及能量管理控制的可行性。

    Compared with other power generation forms, most renewable energy resources are hard to supply stable power even though they are more sustainable and environmental friendly. Therefore, a hybrid backup supply system is proposed to amend this problem. Interfacing the microgrid with current-fed full-bridge isolated DC-DC converter, fuel cell can provide stable backup power for microgrid. Interfacing with the dual-active-bridge bidirectional DC-DC converter, lead-acid battery can control the bidirectional power flow to balance power source and demand. However, the working time of the battery might be reduced due to the limited battery capacity. For this reason, this thesis proposes a power distribution strategy to set output power of the fuel cell for reducing the battery burden. Furthermore, DC-Bus management scheme is employed to control battery output power for balancing generation and demand. Moreover, a state of charge (SOC) regulation scheme is proposed to prevent battery from overcharging or overdischarging. A 450W base-load fuel cell with a 1.5kW lead-acid battery are integrated for the control test. Simulation and experimental results validate the effectiveness of the energy management control and strategy.
    SUMMARY
    This thesis proposes an energy management strategy for a hybrid power supply system which includes a backup supply in the distributed renewable generation system. The hybrid power system is composed of a 500W proton exchange membrane fuel cell and a series of seven 40Ah lead-acid battery bank. Interfacing the microgrid with current-fed full-bridge isolated DC-DC converter, fuel cell can provide stable and controllable backup power for microgrid. Interfacing with the dual-active-bridge bidirectional DC-DC converter, lead-acid batteries can control the bidirectional power flow with DC-Bus. As a main energy source, the fuel cell must provide most of backup supply power for reducing the battery burden. For this reason, this thesis proposes a power distribution strategy to set the fuel cell output power. On the other hand, the battery bank has to compensate the dynamic energy variation. Therefore, DC-Bus management scheme is employed to control battery output power for balancing generation and demand. Moreover, a state of charge (SOC) regulation scheme is proposed to prevent battery from overcharging or overdischarging. Finally, a 450W base-load fuel cell system with a 1.5kW lead-acid battery storage system are integrated for the control test.

    摘要 I ABSTRACT II EXTENDED ABSTRACT III 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 系統架構與貢獻 3 1.3 本文大綱 4 第二章 再生能源發電備援系統 6 2.1 前言 6 2.2 穩定能源供應系統-燃料電池 6 2.2.1 PEMFC電化學反應 7 2.2.2 燃料電池之特性分析 8 2.3 快速響應儲能系統-鉛酸蓄電池 10 2.3.1 鉛酸蓄電池之特性分析 10 2.4 再生能源發電系統之控制架構及協調策略 11 2.4.1 通訊方式之選用 11 2.4.2 搭配再生能源架構之協調策略 13 第三章 穩定能源供應與快速響應儲能系統分析與設計 18 3.1 前言 18 3.2 穩定能源供應系統之控制分析及設計 18 3.2.1 CFFB Converter之動作原理與分析 19 3.2.2 電流控制器設計與分析 22 3.3 快速響應儲能系統之控制分析及設計 32 3.3.1 DAB Converter之動作原理與分析 32 3.3.2 雙迴路控制器設計與分析 44 3.4 再生能源備援系統之協調策略與能源機制 47 3.4.1 燃料電池與鉛酸蓄電池的功率分配策略 48 3.4.2 直流匯流排能量管理機制 50 3.4.3 鉛酸蓄電池SOC調節機制 58 第四章 硬體電路實作與軟體規劃 60 4.1 前言 60 4.2 硬體電路 61 4.2.1 電流饋入式全橋隔離型直流-直流轉換器 61 4.2.2 雙主動式全橋相位移雙向直流-直流轉換器 63 4.2.3 感測器迴授與訊號處理電路 64 4.2.4 功率模組驅動電路 67 4.2.5 數位訊號處理器 TI-TMS320F28335 69 4.2.6 用於DAB Converter之開關動作保護電路 71 4.3 處理器軟體規劃 72 4.3.1 電流饋入式全橋隔離型轉換器之控制流程 72 4.3.2 雙主動式全橋相位移雙向轉換器之控制流程 76 第五章 實體電路實驗結果 82 5.1 前言 82 5.2 穩定能源供應系統-燃料電池 82 5.3 快速響應儲能系統-鉛酸蓄電池 87 5.4 再生能源之備援系統實驗結果 93 5.4.1 燃料電池與鉛酸蓄電池的功率分配策略 93 5.4.2 直流匯流排能量管理機制 96 5.4.3 鉛酸蓄電池SOC調節機制 97 第六章 結論與未來研究方向 102 6.1 結論 102 6.2 未來展望 103 參考文獻 106

    [1]F. Blaabjerg, R. Teodorescu, M. Liserre, A.V. Timbus, ”Overview of Control and Grid Synchronization for Distributed Power Generation Systems,” IEEE Transactions on Industrial Electronics, vol.53, no.5, pp.1398-1409, Oct. 2006.
    [2]蔡武田, ” 質子交換膜燃料電池之非線性電路分析與控制,” 碩士論文, 電機工程學系, 國立中興大學, 2004.
    [3]2014年能源產業技術白皮書, 經濟部能源局, 2014.
    [4]W. Jiang and B. Fahimi, ”Active current sharing and source management in fuel cell-battery hybrid power system,” IEEE Trans. Ind. Electron.,vol. 57, no. 2, pp. 752–761, Feb. 2010.
    [5]Today - Fuel Cell Industry Review 2013
    [6]P. Sethakul, S. Rael, B. Davat, and P. Thounthong, “Fuel cell high-power applications,” IEEE Industrial Electronics Magazine, vol. 3, no. 1, pp. 32-46, March 2009.
    [7]P. Thounthong, B. Davat, S. Rael, and P. Sethakul, “Fuel starvation,” IEEE Ind. Appl. Mag., vol. 15, no. 4, pp. 52–59, Jul./Aug. 2009.
    [8]P. Thounthong, S. Raël, B. Davat, and I. Sadli, “A control strategy of fuel cell/battery hybrid power source for electric vehicle applications,” in Proc. 37th IEEE Power Elect. Spec. Conf. (PESC’06), Jun. 2006, pp. 1–7.
    [9]M. Jang and V. G. Agelidis, “A minimum powerprocessing stage fuel cell energy system based on a boost-inverter with a bi-directional back-up battery storage,” IEEE Trans. Power Electron., accepted on Sep. 2010.
    [10]張凱傑, ”以燃料電池做微電網穩定能源供應之研究,” 碩士論文, 電機工程學系, 國立成功大學, 2013.
    [11]楊智超, ”再生能源儲能系統之隔離型雙向直流轉換器研製,” 碩士論文, 電機工程學系, 國立成功大學, 2012.
    [12]P. Corbo, F. Migliardini, and O. Veneri, “An experimental study of a PEM fuel cell power train for urban bus application,” J. Power Sources, vol. 181, pp. 363–370, July 2008.
    [13]W. Mitchell, B. J. Bowers, C. Garnier, and F. Boudjemaa, “Dynamic behavior of gasoline fuel cell electric vehicles,” J. Power Sources, vol. 154, pp. 489–496, Mar. 2006.
    [14]A. Emadi, Y. J. Lee, and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 55, pp. 2237–2245, June 2008.
    [15]X. Huang, Z. Zhang and J. Jiang, “Fuel Cell Technology for Distributed Generation: An Overview,” in Proc. IEEE Symp. Ind. Electron, Montreal, Que, Jul. 2006, pp. 1613–1618.
    [16]M. J. Khan, and M. T. Iqbal, “Dynamic Modelling and Simulation of a Fuel Cell Generator,” Fuel Cells, Vol. 5, Issue 1, pp. 91-104, 2004.
    [17]Hephas Energy公司網站. Available:http://www.hephasenergy.com/
    [18]CSB公司網站. Available:http://www.csb-battery.com/
    [19]Microchip CAN202 CAN Bus Workshop
    [20]K. Jin, X. Ruan, M. Yang, and M. Xu, “A hybrid fuel cell power system,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1212–1222, Apr. 2009.
    [21]P. Thounthong, V. Chunkag, P. Sethakul, B. Davat, and M. Hinaje, “Comparative study of fuel-cell vehicle hybridization with battery or supercapacitor storage device,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 3892–3904, Oct. 2009.
    [22]U. R. Prasanna and A. K. Rathore, “Small-signal modeling of active-clamped ZVS current-fed full-bridge isolated dc/dc converter and control system implementation using PSoC,” IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1253–1261, Mar. 2014.
    [23]O. A. Ahmed and J. A. M Bleijs, “High-efficiency dc-dc converter for fuel cell applications: performance and dynamic modeling,” IEEE Energy Conversion Congress and Exposition (ECCE), USA, 2009, pp. 67-74.
    [24]X. Kong, L. T. Choi, and A.M. Khambadkone, “Analysis and control of isolated current fed full bridge converter in fuel cell system,” in Proc. 30th Annu. Conf. IEEE Ind. Electron. Soc., Busan, Korea, Nov. 2–6, 2004, pp. 2825–2830.
    [25]P. Xuewei and A. K. Rathore, “Novel interleaved bidirectional snubberless soft-switching current-fed full-bridge voltage doubler for fuel cell vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5535–5546, Dec. 2013.
    [26]X. Kong and A. Khambadkone, “Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 543–550, Mar. 2007.
    [27]P. D. Dharmesh, A. Rathore, and X. Li, “Interleaved zero-voltage-switching active-clamped current-fed full-bridge isolated dc/dc converter for fuel cell applications: A case study analysis,” in Proc. IEEE 3rd ICSET, Sep. 2012, pp. 23–29.
    [28]H. Zhou and A. M. Khambadkone, “Hybrid modulation for dual-active-bridge bidirectional converter with extended power range for ultracapacitor application,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1434–1442, Jul./Aug. 2009.
    [29]G. G. Oggier, G. O. Garcia, and A. R. Oliva, “Modulation strategy to operate the dual active bridge DC–DC donverter under soft switching in the whole operating range,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1228–1236, Apr. 2011.
    [30]A. Rodr´ıguez, J. Sebastian, D. G. Lamar, M. M. Hernando, and A. Vazquez, “An overall study of a dual active bridge for bidirectional DC/DC conversion,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 2010, pp. 1129–1135.
    [31]H. Bai and C. Mi, “Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge dc–dc converters using novel dual-phase-shift control,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2905–2914, Nov. 2008.
    [32]H. Bai, Z. Nie, and C. Mi, “Experimental comparison of traditional phase-shift control, dual-phase-shift control, and enhanced model based control of isolated bidirectional DC-DC converters,” IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1444–1449, Jun. 2010.
    [33]M. N. Gitaua, G. Ebersohna, and J. G. Kettleboroughb, “Power processor for interfacing battery storage system to 725 V DC bus,” Energy Convers. Manag., vol. 48, no. 3, pp. 871–881, Mar. 2007.
    [34]富士電機電子設備技術株式會社, ”富士IGBT-IPM 應用手冊, ” 2004。
    [35]T. Instruments, “Digital Signal Controllers (DSCs) Data Manual,” June 2007–Revised August 2012.
    [36]C.-C. Hua and M.-Y. Lin, “A Study of Charging Control of Lead-Acid Battery for Electric Vehicles,” in ISIE, 2000, vol. 1. IEEE, pp. 135–140.

    下載圖示 校內:2020-08-18公開
    校外:2020-08-18公開
    QR CODE