簡易檢索 / 詳目顯示

研究生: 陳潔
Chen, Chieh
論文名稱: 氣候變遷對曾文水庫缺水風險之衝擊
The Impact of Climate Change on the Risk of Water Shortage for Tseng-Wen Reservoir
指導教授: 游保杉
Yu, Pao-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 107
中文關鍵詞: 氣候變遷水庫系統複合型乾旱風險指標缺水風險
外文關鍵詞: climate change, reservoir system, Preferable Drought Risk Index, risk of water shortage
相關次數: 點閱:119下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究探討曾文水庫受氣候變遷影響下,對水文及水資源所造成之衝擊。以台灣西南部的曾文水庫集水區為研究區域,該集水區氣候乾溼分明,85%的年雨量集中在溼季(5至10月)。因此亟需仰賴水庫調節,蓄存溼季時期的豐沛流量以確保乾季時期供水穩定,但在氣候變遷影響下,水文情況的改變勢必對水資源的分配與規劃利用產生影響及衝擊。
      因此,本研究整合氣象繁衍模式、水文模式和水庫系統等模式,分析水資源系統之可供水量。其中,氣象繁衍模式結合全球環流模式模擬未來氣候變遷情境A1B、A2、B1下的溫度及雨量序列,溫度及雨量序列將作為後續水文模式之輸入值,模擬集水區未來可能的情境流量,接著藉由水庫系統模式模擬水庫操作下的可供水量,根據各標的需水量及可供水量模擬值計算水資源系統評估指標。本研究有別於以往僅以缺水率作為區分水資源乾旱等級之單一型指標,採用複合型水資源指標-可綜合評估缺水情況之缺水強度、缺水延時及缺水事件數,並透過指標之單調特性測試選出修正型乾旱風險指標作為本研究之水資源評估指標,且經過歷史乾旱紀錄驗證,足以作為乾旱事件之評判標準,最後以修正型乾旱風險指標探討氣候變遷對曾文水庫水源供給及缺水風險所帶來的衝擊。
      研究結果指出:與基期相比,A1B情境下2020至2039年,缺水最嚴重之情況在未經人為乾旱管理操作下,其公共給水發生乾旱情況之總時間增加至2.2倍,發生乾旱等級二級狀況之總時間增加至2.34倍;農業給水發生乾旱情況之總時間增加至1.8倍,發生乾旱等級一級狀況之總時間增加至1.93倍。整體來說,水資源乾旱情況之發生期間及嚴重程度增加,缺水風險升高。

      This study aims to assess the impact of climate change on the hydrology and water resource. In this study, the selected study area, Tseng-Wen Reservoir catchment locates in the southwestern Taiwan in which the precipitation between May and October contributes about 85% of the total water flux of a year. Hence, this reservoir plays an important role to provide functions on flood mitigation and water supply. Under the climate change, however, the change of hydrology would impact on the water allocation and management of reservoir storage.
      Applications of weather generator, hydrological model, and reservoir system model are necessary to develop an assessment model of the water resource system. By integrating general circulation models, weather generator can simulate projected changes in temperature and precipitation under climate change scenarios. The projected data generated from weather generator would be the input data of the hydrological model to simulate the scenario streamflows. Then, the scenario streamflows were put into the reservoir system model to simulate the water supply. Aparts from previous studies using shortage rate as the level of water shortage hazard, this study attempts to develop a compound water resource indicator which is capable of multi-aspect description of water shortage, including duration of shortage, events of shortage and amount of water shortage. By analysis of monotonic behavior of indicator, this study chose the Preferable Drought Risk Index as performance index to estimate the risk of water shortage. The index is validated by the historical drought and is capable to be the criterion of drought.
      With results of research on the risk of water shortage, under the most difficult situation in the A1B scenario whose projected period is 2020~2039yr, the drought period for public water supply is up to 2.2 times and for agriculture water supply is up to 1.93 times. Generally speaking, the drought period is longer and the water shortage increases, so the risk of water shortage would raise.

    摘要..........I Abstract..........III 誌謝..........V 目錄..........VII 表目錄..........XI 圖目錄..........XIII 符號表..........XVII 第一章 緒論..........1   1.1研究動機與目的..........1   1.2文獻回顧..........2   1.3本文組織與架構..........5 第二章 研究區域與資料概述..........7   2.1研究區域概述..........7   2.2水文資料概述..........10   2.3未來情境模擬所需資料..........11 第三章 氣象繁衍模式..........21   3.1模式理論介紹..........21   3.2氣象繁衍模式之測試..........23   3.3基期與未來情境雨量、溫度繁衍結果..........24 第四章 水文模式..........37   4.1模式理論介紹..........37   4.2水文模式之率定與驗證..........41   4.3基期與情境流量模擬結果..........43 第五章 水庫系統模式..........49   5.1模式理論介紹..........49   5.2水庫系統模擬所需資料..........51   5.3模擬模式誤差修正..........53   5.4基期與情境水庫操作模擬結果..........56 第六章 氣候變遷下缺水風險評估..........69   6.1水資源系統指標介紹..........69   6.2水資源系統指標之選定..........72   6.3修正型乾旱風險指標之乾旱等級與分級標準訂立..........77   6.4修正型乾旱風險指標之應用性與經濟價值..........82   6.5氣候變遷下缺水風險之衝擊評估..........86 第七章 結論與建議..........89   7.1結論..........89   7.2建議..........91 參考文獻..........93 附錄..........99

    1. 行政院國家科學委員會(2010),「台灣氣候變遷推估與資訊平台建置計畫」。
    2. 吳雷根(2004),「曾文水庫枯水期長期入流量預測之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    3. 呂季蓉(2006),「台灣南部地區長期乾旱趨勢分析之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    4. 張良正、何智超、牛敏威(2009),「考慮氣候變遷下台中地區缺水風險評估」,第十三屆海峽兩岸水利科技交流研討會論文。
    5. 陳朝圳、李錦育(2001),「以NOAA氣象衛星資料進行乾旱研究」,第十二屆水利工程研討會論文集,第K25-K31頁,2001年7月5-6日,成功大學。
    6. 童慶斌、游保杉、李明旭(2007),「強化區域水資源永續利用與因應氣候變遷之調適能力(1)」,水利規劃試驗所委託計畫。
    7. 楊道昌(1999),「區域連續型降雨–逕流模之研究」,國立成功大學水利及海洋工程研究所博士論文。
    8. 經濟部水利署(2003),「旱災災害防救業務計畫」,取自:http://www.wra.gov.tw。
    9. 謝信良、陳正改(1985),「台灣地區氣象災害之調查研究(I)」,國科會研究報告。
    10. 魏綺瑪(2009),「利用統計降尺度法推估石門水庫集水區未來情境降水研究」,國立成功大學水利及海洋工程研究所碩士論文。
    11. Arnold, J.G., Srinivasan, R., Muttiah, R.S., and, Williams, J.R. (1998), “Large area hydrologic modeling and assessment - Part 1: model development”, Journal of the American Water Resources Association, 34 (1), 73-89.
    12. Cañón, J., González, J. and Valdés, J. (2009), “Reservoir Operation and Water Allocation to Mitigate Drought Effects in Crops: A Multilevel Optimization Using the Drought Frequency Index”, Journal of Water Resources Planning and Management, 135(6), 458-465.
    13. Chang, L. C., Chang, F. J., Wang, K. W., and Dai, S. Y. (2010), “Constrained genetic algorithms for optimizing multi-use reservoir operation”, Journal of Hydrology, 390(1-2), 66-74.
    14. Chen, J., Brissette, F. P., Poulin, A., and Leconte, R. (2011), “Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed”, Water Resources Research, 47, W12509.
    15. Chu, J. L., Yu, P. S. (2010), “A study of the impact of climate change on local precipitation using statistical downscaling”, Journal of Geophysical Research, 115, D10105.
    16. Elsner, M. M., Cuo, L., Voisin, N., Deems, J. S., Hamlet, A. F., Vano, J. A., Mickelson, K. E. B., Lee, S. Y., and Lettenmaier, D. P. (2010), “Implications of 21st century climate change for the hydrology of Washington State”, Climatic Change, 102, 225-260.
    17. Grillakis, M. G., Koutroulis, A. G., and Tsanis, I. K. (2011), “Climate change impact on the hydrology of Spencer Creek watershed in Southern Ontario, Canada”, Journal of Hydrology, 409, 1-19.
    18. Hall, J., and Murphy, C. (2010), “Vulnerability Analysis of Future Public Water Supply Under Changing Climate Conditions: A Study of the Moy Catchment, Western Ireland”, Water Resources Management, 24, 3527-3545.
    19. Hashimoto, T., Stedinger, J. R., and Loucks, D. P. (1982), “Reliability, Resiliency, and Vulnerability Criteria for Water-Resource System Performance Evaluation”, Water Resources Research, 18(1), 14-20.
    20. Huang, J. S. (1986), “An appraisal of reservoir planning and shortage tolerances in Taiwan”, Proc. 3rd Hydraulic Engineering Conference, Tam-Kang Univ., Taipei, Taiwan, R.O.C., 51-64 (in Chinese).
    21. Jain, S. K. (2010), “Investigating the Behavior of Statistical Indices for Performance Assessment of a Reservoir”, Journal of Hydrology, 391(1-2), 90-96.
    22. Jinno, Kenji, Zongxue, X., Kawamura, A., and Tajiri, K. (1995), “Risk Assessment of a Water Supply System during Drought”, International Journal of Water Resources Development, 11(2), 185-204.
    23. Kjeldsen, T. R., and Rosbjerg, D. (2004), “Choice of reliability, resilience and vulnerability estimators for risk assessments of water resources systems”, Hydrological Sciences Journal, 49(5), 755-767.
    24. Kundzewicz, Z. W. and Kindler, J. (1995), “Multiple criteria for evaluation of reliability aspects of water resources systems”, Modelling and Management of Sustainable Basin-Scale Water Resources Systems, IAHS Publication 231. IAHS Press, Wallingford, UK, 217-224.
    25. Loucks, D. P. (1997), “Quantifying trends in system sustainability”, Hydrological Sciences Journal, 42(4), 513-530.
    26. Minville, M., Brissette, F., and Leconte, R. (2010), “Impacts and Uncertainty of Climate Change on Water Resource Management of the Peribonka River System (Canada)”, Journal of Water Resources Planning and Management, 136, 376-385.
    27. Mote, P. W., Salathé, E. P. Jr. (2010), “Future climate in the Pacific Northwest”, Climatic Change, 102, 29-50.
    28. Racsko, P., Szeidl, L., and Semenov, M. (1991), “A Serial Approach to Local Stochastic Weather Models”, Ecological Modelling, 57(1-2), 27-41.
    29. Richardson, C. W. (1981) “Stochastic Simulation of Daily Precipitation, Temperature, and Solar-Radiation”, Water Resources Research, 17(1), 182-190.
    30. Richardson, C. W. and Wright, D. A. (1984), “WGEN: A model for generating daily weather variables”, US Department of Agriculture, Agricultural Research Service, ARS-8, USDA, Washington, DC, USA.
    31. Sandoval-Solis, S., McKinney, D. C., Teasley, R. L., and Patino-Gomez, C. (2011), “Groundwater banking in the Rio Grande basin”, Journal of Water Resources Planning and Management, 137(1), 62-71.
    32. Semenov, M. A., and Brooks, R. J. (1999), “Spatial interpolation of the LARS-WG stochastic weather generator in Great Britain”, Climate Research, 11(2), 137-148.
    33. Semenov, M. A., Brooks, R. J., Barrow, E. M., and Richardson, C. W. (1998), “Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates”, Climate Research, 10(2), 95-107.
    34. Vano, J. A., Voisin, N., Cuo, L., Hamlet, A. F., Elsner, M. M., Palmer, R. N., Polebitski, A., and Lettenmaier, D. P. (2010), “Climate change impacts on water management in the Puget Sound region,Washington State, USA”, Climatic Change, 102, 261-286.
    35. Westphal, K. S., Laramie, R. L., Borgatti, D., and Stoops, R. (2007), “Drought Management Planning with Economic and Risk Factors”, Journal of Water Resources Planning and Management, 133, 351-362.
    36. Yu, P. S., Yang, T. C., and Wu, C. K. (2002), “Impact of climate change on water resources in southern Taiwan”, Journal of Hydrology, 260(1-4), 161-175.
    37. Zhang, H., Huang, G. H., Wang, D., and Zhang, X. (2011), “Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands”, Journal of Hydrology, 396, 94-103.
    38. Zongxue, X., Jinno, K., Kawanura, A., Takesaki, S., and Ito, K. (1998), “Performance risk analysis for Fukuoka water supply system”, Water Resources Management, 12, 13-30.

    下載圖示 校內:立即公開
    校外:2012-08-31公開
    QR CODE