| 研究生: |
黃威傑 Huang, Wei-Jie |
|---|---|
| 論文名稱: |
基於主動式阻抗控制之電動輔助自行車控制策略 Control Strategy of Pedelec based on Active Impedance Control |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 共同指導教授: |
胡家勝
Hu, Jia-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 電動輔助自行車 、電助自行車 、阻抗控制 、動力輔助 |
| 外文關鍵詞: | pedelec, impedance control, power-assisted |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現行之電動輔助自行車助力策略普遍簡易,無法有效對路況負載變化進行自動調變,本研究將阻抗控制架構應用在電動輔助自行車上,提出一基於阻抗控制架構之主動式動力輔助策略,能滿足對環境負載自動調變及有效地降低踩踏阻抗,使騎乘者得舒適踩踏,同時考量中置型電動輔助自行車之相關機構以及法規限制,以產品化為目標之助力策略。本研究使用電動輔助自行車現有之產品Giant Quick E+ 2018,在不改變產品硬體配備之前提下,先進行物理建模分析,再提出新型之控制架構以及助力策略,並透過微控制器Stm32實現新提之功能以及輔助馬達之扭矩控制,最後以Tacx Neo 2T Smart室內健身模擬平台,模擬室外騎乘之各種路況負載變化,驗證控制架構以及助力策略之有效性。
Nowadays, the power-assisted strategies for pedelecs cannot effectively adjust to load changes on the road automatically. This study applies impedance control to pedelecs and propose an active power-assisted strategy based on impedance control. This strategy can meet the requirements needed to adjust load changes automatically and reduce the pedaling impedance effectively such that a rider’s pedaling comfort is improved. These requirements were met while maintaining relevant mechanisms and legal restrictions of the mid-drive pedelec aimed for commercial pedelecs. This thesis used the Giant Quick- E+ 2018 pedelec for this study. Without changing the hardware of this product, the physical modeling and analysis is first conducted, then a new control architecture is proposed and followed by a power-assisted strategy. Secondly, the new functions mentioned above were realized including the torque control of the assist motor by a microcontroller Stm32. Finally, the Tacx Neo 2T Smart, an indoor fitness simulation platform, is used to evaluate various road load changes during outdoor riding to verify the effectiveness of the control architecture and power-assisted strategy.
[1] IPCC https://www.ipcc.ch/report/ar5/wg3/ ,檢索日期:2020/07/15
[2] 台灣自行車輸出業同業公會。
https://www.tba-cycling.org/ ,檢索日期:2020/07/15
[3] E. A. Lomonova, A. J. A. Vandenput, J. Rubacek, B. d'Herripon, and G. Roovers, "Development of an improved electrically assisted bicycle," Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 2002, pp. 384-389.
[4] K. Masatoku, "Regulations on electric bicycles in Japan", Proc. Jpn. Conf. Safety Popularization Elect. Assist Bicycles, pp. 1-5, 2001.
[5] 陳冠昕,「電助自行車之輔助扭矩控制策略研究」,國立成功大學機械工程研究所,碩士論文,2017。
[6] H. Yabushita, Y. Hirata, K. Kosuge, and Z. Wang, "Environment-adaptive control algorithm of power assisted cycle," IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468), Roanoke, VA, USA, 2003, pp. 1962-1967.
[7] 王俊欽,「電助自行車之動力輔助模式切換策略設計」,國立成功大學機械工程研究所,碩士論文,2018。
[8] C. Liu and R. C. Hsu, "A fuzzy Q-learning based assisted power management method for comfortable riding of pedelec," 2015 6th International Conference on Automation, Robotics and Applications (ICARA), Queenstown, 2015, pp. 580-585.
[9] P. H. Chen, "A scheme of fuzzy training and learning applied to Elebike control system," Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063), San Antonio, TX, USA, 2000, pp. 810-816.
[10] 顏家銘,「國內外電動輔助自型及電動自行車車輛分類及安全法規簡介」,車安通訊季刊,車輛安全審檢中心,2018,第8頁。
[11] 國際標準化組織(ISO)
https://www.iso.org/home.html ,檢索日期:2020/07/15
[12] 劉子瑜,「基於弦波電流驅動於永磁同步馬達電流迴路控制之研究」,國立成功大學電機工程研究所,碩士論文,2009年。
[13] 許鎧麟,「利用相量圖探討馬達穩態時之弱磁與轉矩特性分析」馬達電子報、成大馬達科技中心,第803期,2018年。
[14] 陳瑜芳,「逆磁致伸縮扭矩感測器設計與實現」,國立成功大學機械工程研究所,碩士論文,2019年。
[15] 王玉麟,「電助自行車數位控制系統建立與實現」,國立成功大學機械工程研究所,碩士論文,2019年。