| 研究生: |
陳柏任 Chen, Po-Jen |
|---|---|
| 論文名稱: |
碳化矽蕭基二極體之邊緣終端區結構崩潰電壓特性模擬 Simulation of Breakdown Voltage Characteristics of 4H-SiC Schottky Barrier Diode with Edge Termination Structure |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 碳化矽蕭基二極體 、功率元件 、終端邊緣結構設計 |
| 外文關鍵詞: | Silicon-Carbide Schottky barrier diode (SiC-SBD), Power device, Edge termination structure |
| 相關次數: | 點閱:126 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相較於技術穩定的矽晶圓,碳化矽(SiC)材料應用在高功率元件,有著更好的特性,例如:寬能矽、高崩潰電場、高熱傳導係數等特性,隨著綠色能源科技的提倡,碳化矽功率元件被賦予極高的評價,而成本及技術較低的二極體,是最先被研發且量產的碳化矽功率元件,其中又以單極性的蕭基二極體(Schottky barrier diode - SBD)應用最廣。
許多研究團隊,在實現其高耐壓及低導通電阻的特性上做設計,而本論文注重在邊緣結構終端區結構的設計,來減少金屬半導體接面邊緣的電場擁擠的現象,以提高元件的崩潰電壓,或減低導通電阻。
我們利用元件模擬軟體(Synopsys Sentaurus TCAD)來輔助設計高耐壓及低導通電阻的碳化矽蕭基二極體元件,利用改變磊晶層的濃度、主動區的長度以及保護層的厚度,來設計使用場板邊緣結構的碳化矽蕭基二極體;同時合併場板和保護環的邊緣結構,設計不同的磊晶層濃度、主動區寬度及場板延伸長度,使元件能有最佳的特性。
在研究中發現,對於崩潰電壓的影響,保護層厚度及場板延伸的長度有最佳值(保護層厚度0.4um、場板延伸長度12um,在磊晶層濃度為6e15cm-3時,崩潰電壓可達1135V),而本研究中也發現,相較於只有場板結構,合併場板及保護環的結構可以提升約3~5%的崩潰電壓。
Silicon-Carbide (SiC) has many superior material properties in power device applications against mature manufacturing Silicon wafer. For example, SiC has wide bandgap, high breakdown field, high thermal conductivity and so on. With the promotion of the green technology for saving energy, SiC power devices were given a high rating. The first to be developed and mass-produced SiC power devices are diodes which need lower technique and cost. Among them, the unipolar Schottky barrier diodes (SBDs) have widest application.
Many research teams have been designed and implemented the device with high breakdown voltage and low conduction resistance. In this paper, we focus on designing the edge termination structure to reduce the field crowding phenomenon around the edge of the metal-semiconductor junction and improve the breakdown voltage or reduce the conduction resistance of the device.
We use the simulation software (Synopsys Sentaurus TCAD) to design the high voltage and low resistance SiC-SBD. First, we change the epitaxy layer concentration, active region length and passivation thickness with field plate structure. Then we combine the field plate and field ring edge termination structure in different epitaxy layer concentration, active region length and field plate extended length to reach the best performance with the optimal value of these parameters.
In our researches, we found that passivation thickness and field plate overlap length have an optimal value (breakdown voltage reaches 1135V with passivation thickness equals 0.4um and field plate overlap equals 12um, in epitaxy layer concentration equals to 6e15cm-3 condition) with the influence of improving breakdown voltage. We also notice that combining the field plate and the field ring structure can improve about 3~5% of the breakdown voltage comparing with the structure only with field plate.
[1]楊雅嵐,江柏風, ”The Strategy Plan for Silicon Carbide Devices Development in Taiwan”, August 2010
[2]Bin Zhao, Qin Jiaopu Wen, Yangguang Yab, “Characteristics, Applications and Challenges of SiC Power Devices for Future Power Electronic System” IEEE 7th International Power Electronics and Motion Control Conference, June 2-5 2012
[3]Juergen Biela, Member, IEEE, Mario Schweizer, Student Member, IEEE, Stefan Waffler, Student Member, IEEE, and Johann W. Kolar, Senior Member, IEEE “SiC versus Si—Evaluation of Potentials for Performance Improvement of Inverter and DC–DC Converter Systems by SiC Power Semiconductors”, IEEE Transactions on Industrial Electronics, VOL.58, NO.7, July 2011
[4]Juergen Biela, Member, IEEE, Mario Schweizer, Student Member, IEEE, Stefan Waffler, Student Member, IEEE, and Johann W. Kolar, Senior Member, IEEE “SiC versus Si—Evaluation of Potentials for Performance Improvement of Inverter and DC–DC Converter Systems by SiC Power Semiconductors”, IEEE Transactions on Industrial Electronics, VOL.58, NO.7, July 2011
[5]Chenming Calvin Hu, “Modern Semiconductor Devices for Integrated Circuits”, 2010
[6]B. Jayant Baliga, “Silicon Carbide Power Devices”, 2005
[7]“Wikiwand – pin-diode”, Retrieved : July 2015
http://www.wikiwand.com/de/Pin-Diode
[8]“Wikipedia – Silicon carbide”, Retrieved : July 2015 https://en.wikipedia.org/wiki/Silicon_carbide
[9]Lely, Jan Anthony, "Sublimation process for manufacturing silicon carbide crystals", published 7 March 1955, issued 30 September 1958
[10]Costas Sikalidis, “Advances in Ceramics – Synthesis and Characterization, Processing and Specific Applications”, 2011
[11]Saurabh Gupta, “Pulsed laser ablation and micromachining of 4H and 6H SiC wafers for high-temperature MEMS sensors”, 2008
[12]ROHM. Semiconductor Inc. “SiC Power Devices and Modules” June 2013
[13]Christian Strenger, Chair of Electron Device, University of Erlangen-Nuremberg, “SiC Growth and Device Processing”, 2012
[14]Peter Friedrichs, “Technological challenges for manufacturing power devices in SiC”, CS MANTECH Conference, Austin, Texas, USA, pp 221-224, May 14-17 2007
[15]A.J.Bauer, M.Rambach, L.Frey, R.Weiss, R.Rupp, P.Friedrichs, R.Schorner and D.Peters, “Surface properties and electrical characteristics of rapid thermal annealed 4H-SiC”, Materials Science Forum Vols. 433-436, pp 609-612, 2003
[16]Negoro, Y.; Katsumoto, K.; Kimoto, T.; Matsunami, H., “Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC (0001)”, Journal of Applied Physics, Vol. 96, Issue 1, pp. 224-228 ,2004
[17]Tesfaye Ayalew “Dissertation Tesfaye Ayalew - 3.1.6.2 Schottky Contact,” Retrieved : July 2015
http://www.iue.tuwien.ac.at/phd/ayalew/node56.html
[18]Aryadeep Mrinal, Vijay Kumar M P, Vivek N, Manjunatha M, Gene Sheu and Shao-Ming Yang, “Optimization of SiC Schottky Diode using Linear P-top for Edge Termination”, IEEE 2013
[19]“Wikipedia – Schottky diode”, Retrieved : July 2015 https://en.wikipedia.org/wiki/Schottky_diode
[20]Fasheng Zhang, “The Simulation Breakdown Characteristic of 4H-SiC SBD With Field Rings”, IEEE International Conference on Electrical and Control Engineering, 2010
[21]Yi Huang, Keerthi Varman Anna Jayaprakash, and Chun Cheung, “Effects of Edge Termination using Dielectric Field Plates with Different Dielectric Constants, Thicknesses and Bevel Angles”, IEEE 2014
[22]Muhammad Khalid, Saira Riaz, and Shahzad Naseem “Surface Passivation of Ti/4H-SiC Schottky Barrier Diode”, Chinese Physical Society and IOP Publishing Ltd, Vol. 58, No. 4, October 15, 2012
[23]Marius Grundmann, “The Physics of Semiconductors”, pp458, 2006
[24]Song Qing-wen, Zhang Yu-ming (IEEE M), and Zhang Yi-men (IEEE SM), Wang Zhang-xu, “The Effect of Surface Charge on the breakdown Behaviors of SiC SBD with planar terminations”, IEEE 2009
[25]M. Bhatnagar, H. Nakanishi', S. Bothra, P. K. McLarty, and B. J. Baliga, "Edge Terminations for Sic High Voltage Schottky Rectifiers", IEEE PSRC Industrial Scholar from Sanken Electric Corporation, Japan, 1993
[26]“Breakdown Voltage Characteristics of SiC Schottky Barrier Diode with Aluminum Deposition Edge Termination Structure”, Journal of the Korean Physical Society, Vol. 49, pp S768∼S773, December 2006
[27]Evan M. Handy, Mulpuri V. Rao, O.W. Holland, P.H. Chi, K.A.Jones, M.A. Derenge, R.D.Vispute, and T.Venkatesan, “Al, B, and Ga Ion-Implantation Doping of SiC”, Journal of Electronic Materials, Vol. 29, No. 11, 2000
[28]Giorgio Lulli, “Two-Dimensional Simulation of Undermask Penetration in 4H-SiC Implanted With Al+ Ions”, IEEE Transactions on Electron Devices, VOL. 58, NO. 1, January 2011
[29]Kazuhiro Mochizuki, Senior Member, IEEE, Tomoyuki Someya, Takashi Takahama, Hidekatsu Onose, and Natsuki Yokoyama, “Detailed Analysis and Precise Modeling of Multiple-Energy Al Implantations Through SiO2 Layers Into 4H-SiC”, IEEE Transactions on Electron Devices, VOL. 55, NO. 8, August 2008
[30]Bill Wilson, “Openstax CNX – Reverse Biased/Breakdown”, Retrieved : July 2015 http://cnx.org/contents/9dc51082-0130-4170-8ce5-78a0e65db4a4@12/Reverse-Biased/Breakdown
[31]Jong Mun Park, “Novel Power Device for Smart Power Applications – 3.1.3 Carrier Recombination and Generation”, Retrieved : July 2015 http://www.iue.tuwien.ac.at/phd/park/node31.html
[32]“Axiom Test Equipment – Agilent 4156C Semiconductor Parameter Analyzer”, Retrieved : July 2015
http://www.axiomtest.com/Component-Analyzers,-LCR,-Semiconductor/Semiconductor-Parameter-Analyzers/Keysight-..-Agilent/4156C/Semiconductor-Parameter-Analyzer/
[33]Pasqualina M. Sarro, “Silicon carbide as a new MEMS technology”, October 1999
[34]Vladimir Scarpa, Uwe Kirchner, Rolf Gerlach, Ronny Kern,”New SiC Thin-Wafer Technology Paving the Way of Schottky Diodes with Improved Performance and Reliability”, 2012
[35]R. Rupp, R. Kern, R. Gerlach, “Laser backside contact annealing of SiC Power devices:A Prerequisite for SiC thin wafer technology”, 25th International Symposium on Power Semiconductor Devices & ICs, Kanazawa, 2013