簡易檢索 / 詳目顯示

研究生: 沈義順
Shen, Ye-Shun
論文名稱: 快跳頻展頻系統結合移頻鍵移信號之檢測
On the Detection of the Fast Frequency-Hopped Spread Spectrum Systems with FSK Signals
指導教授: 蘇賜麟
Su, Szu-Lin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 104
中文關鍵詞: 跳頻錯誤率分析衰落通道分集結合多波道單音干擾
外文關鍵詞: frequency hopping, BEP analysis, multitone jamming, fading channel, diversity combining
相關次數: 點閱:107下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要研究快跳頻展頻系統結合移頻鍵移(FSK)信號之非同調檢測。兩種通道環境將被討論:第一種是多波道單音干擾(MTJ)的環境,另外一種則是跳頻多址進接(FHMA)的環境。
      首先針對多波道單音干擾的通道環境,對於快跳頻展頻系統結合移頻鍵移信號在萊斯(Rician)衰落通道與高斯雜訊的環境下,我們提出通用的位元誤碼率理論分析架構。論文裡分別考慮n=1-band MTJ與independent MTJ兩種多波道單音干擾模式並分別對於ratio-statistic combining, product combining與 self-normalized combining三種分集結合方法進行研究與分析。我們推導通用的機率密度函數(PDF)與累積分布函數(CDF) ,這些通用函數可被運用於各種分集結合方法以獲得其理論分析。根據這些統計函數,我們可以求得各種分集結合方法對抗多波道單音干擾的位元誤碼率之系統性能。經由模擬驗證過的理論分析結果得知,在固定位元能量的假設下:1) 期望信號所遭受到衰落對於最差位元誤碼率的影響比較明顯,而多波道單音干擾所遭受到衰落對於系統性能的影響較不顯著。2)不同於先前文獻中所提出的結果,對於採用product combining與self-normalized combining之接收機,independent 多波道單音干擾模式比n=1-band干擾模式對於通訊系統具有較佳的干擾能力。
      對於跳頻多址進接結合複頻鍵移(MFSK)信號之系統,在跳頻多址進接的通道環境下,根據遞迴式干擾消去(iterative interference cancellation)的觀念,我們提出一種新的多用戶檢測(multi-user detection)方法。多用戶檢測接收機的第一級採用soft-limited分集結合(近似最大可能性)方法而第二級嘗試利用已檢測出其他用戶符號來消除多址進接干擾。根據模擬的結果得知,我們提出的遞迴式干擾消去方法操作在瑞雷(Rayleigh)衰落通道下比原來的演算法提供約20%使用者容量的增加。

      This thesis intend to investigate the fast frequency-hopped spread-spectrum (FFH/SS) systems combined with noncoherent detection of frequency-shift-keyed (FSK) signals. Two cases of communication channels are considered, one is a jammed channel in which the multitone jamming (MTJ) is present and the other is the frequency-hopped multiple access (FHMA) channels.
      For the first class of channels, we establishes an analytical framework of the bit error probability (BEP) for an FFH/SS system in conjunction with binary FSK signal over Rician fading channels in presence of MTJ and additive white Gaussian noise (AWGN). Two types of MTJ models, namely n = 1-band MTJ and independent MTJ, are taken into account. Three types of diversity combining schemes, called ratio-statistic combining, product combining, and self-normalized combining, are applied and analyzed. We derive the general expressions of probability density functions (PDFs) and cumulative distribution functions (CDFs) of random variable z, which can be applied to perform theoretical analysis for each diversity combining receiver. According to these statistic functions, the BEP performance of a specific diversity combining receiver against MTJ is then evaluated. These analytical results, verified by simulations, show that under constant bit energy assumption: 1) the worst-case BEP performance of each diversity combining receiver is sensitive to the fading effect on the desired signal, but is insensitive to that on the jamming tones. 2) unlike the well-known knowledge, independent MTJ is more harmful than n = 1-band MTJ for both product combining and self-normalized combining receivers as the diversity level L≧2.
      For the second class of channels, we propose a novel multiuser detection scheme based on iterative interference cancellation (IIC) concerning the FHMA system using multilevel FSK (MFSK) signals. A soft-limited combining (near maximum likelihood) receiver is employed in the first stage of the detector while the second stage attempts to remove the multiple access interferences produced from the other users. According to the simulation results, our proposed IIC method can offer about 20% capacity improvement when compared with the original IIC algorithm.

    摘要 i Abstract iii Contents v List of Tables viii List of Figures ix 1 Introduction 1 1.1 The FFH/BFSK System under Multitone Jamming Environment 2 1.2 The FFH/MFSK System under Multiple Access Environment 5 1.3 The Organization of This Dissertation 6 2 System Description and Channel Models 9 3 n = 1-band Multitone Jamming 17 3.1 Unifying Density Functions of the Random Variable 19 3.1.1 Ratio-statistic combining 19 3.1.2 Product combining 20 3.1.3 Self-normalized combining 21 3.2 Derivation of PDF and CDF 22 3.2.1 No jamming tone in the hopping band 23 3.2.2 With jamming tone in the signal branch 23 3.2.3 With jamming tone in the nonsignal branch 25 3.3 BEP Performance Analysis 27 3.3.1 Ratio-statistic combining 27 3.3.2 Product combining 28 3.3.3 Self-normalized combining 29 3.3.4 Calculation of the bit error probability 30 3.4 Numerical Results and Discussions 31 3.4.1 Ratio-statistic combining scheme 31 3.4.2 Product and self-normalized combining schemes 41 4 Independent Multitone Jamming 51 4.1 Derivation of PDF and CDF 52 4.2 BEP Performance Analysis 55 4.3 Numerical Results and Discussions 57 5 Multiuser Detection of FHMA/MFSK System 71 5.1 System Description and Channel Model 71 5.2 A Novel IIC Multiuser Detector 73 5.3 Simulation Results and Discussions 76 6 Conclusions and Futher Work 86 A Derivations of (3.43) from (3.27) 89 B Another expression of f(x) 91 Bibliography 95

    [1] J. S. Lee and R. H. French and L. E. Miller, “Probability of error analyses of a BFSK frequency-hopping system with diversity under partial-band jamming interference–Part I: Performance of a square-law linear combining soft decision receiver”, IEEE Trans. Commun., pp. 645-653, June 1984.
    [2] J. S. Lee and L. E. Miller, and Y. K. Kim, “Probability of error analyses of a BFSK frequency-hopping system with diversity under partial-band jamming interference–Part II: Performance of a square-law nonlinear combining soft decision receiver”, IEEE Trans. Commun., pp. 1243-1250, Dec. 1984.
    [3] L. E. Miller, J. S. Lee and A. P. Kadrichu, “Probability of error analyses of a BFSK frequency-hopping system with diversity under partial-band jamming interference—Part III: Performance of a square-law self-normalizing soft decision receiver,” IEEE Trans. Commun., vol. 34, no. 7, pp. 669-675, July 1986.
    [4] T. A. Gulliver and E. B. Felstead, “Anti-jam by fast FH NCFSK - myths and realities”, Proc. IEEE Military Commun. Conf., pp. 187-191, 1993.
    [5] T. A. Gulliver and E. B. Felstead, R. E. Ezers, and J. S. Wight, “A unified approach to time diversity combining for fast frequency hopped NCMFSK anti-jam processing”, Proc. IEEE Military Commun. Conf., pp. 415-420, 1994.
    [6] I. Z. Maljevic and M. L. Dukic, “Comparison of FFH FSK nonlinear combining receivers in a fading channel with partial-band interference”, Proc. IEEE ISSSTA’96, pp. 1273-1277, 1996.
    [7] C. M. Keller and M. B. Pursley, “Clipper diversity combining for channels with partial-band Interference–Part I: clipped linear combining,” IEEE Trans. Commun., vol. 35, pp. 1320-1328, Dec. 1987.
    [8] C. M. Keller and M. B. Pursley, “Clipper diversity combining for channels with partial-band Interference–Part II: ratio-statistic combining,” IEEE Trans. Commun., vol. 37, no. 2, pp. 145-151, Feb. 1989.
    [9] R. C. Robertson, J. F. Riley and T. T. Ha, “Error probabilities of fast frequency-hopped FSK with ratio-statistic combining in a fading channel with partial-band interference,” Proc. IEEE Military Commun. Conf. vol. 3, pp. 865-869, 1992.
    [10] Y. P. Chua, T. T. Ha and R. C. Robertson, “Error probabilities for FFH/BFSK with ratio-statistic combining and soft decoding in a fading channel with partial-band jamming,” IEEE Signals, Systems and Computers Conf., vol. 1, pp. 460-464, 1994.
    [11] C. M. Keller and M. B. Pursley, “Diversity combining for channels with fading and partial-band Interference”, IEEE J. Select. Areas Commun., pp.248-260, Feb. 1987.
    [12] R. Viswanathan and K. Taghizadeh, “Diversity combining in FH/BFSK systems to combat partial-band jamming,”IEEE Trans. Commun., vol. 36, no. 9, pp. 1062-1069, Sept. 1988.
    [13] K. C. Teh, A. C. Kot and K. H. Li, “Partial-band jamming rejection of FFH/BFSK with product combining receiver over a Rayleigh fading channel,” IEEE Commun. Lett., vol. 1, no. 3, pp. 64-66, May 1997.
    [14] K. C. Teh, A. C. Kot and K. H. Li, “Performance of FFH/BFSK product combining receiver over a Rician fading channel with partial-band jamming,” Electron. Lett., vol. 33, no. 11, pp. 935-937, 1997.
    [15] R. C. Robertson and T. T. Ha, “Error probabilities of fast frequency-hopped MFSK with noise-normalization combining in a fading channel with partial-band interference”, IEEE J. Select. Areas Commun., pp 404-412, Feb. 1992.
    [16] R. C. Robertson and T. T. Ha, “Error probabilities of fast frequency-hopped FSK with self-normalization combining in a fading channel with partial-band interference,” IEEE J. Select. Areas Commun., vol. 10, no. 4, pp. 714-723, May 1992.
    [17] R. C. Robertson and K. Y. Lee, “Performance of fast frequency-hopped MFSK receivers with linear and self-normalization combining in a Rician fading channel with partial-band interference,” IEEE J. Select. Areas Commun., vol. 10, no. 4, pp. 731-741, May 1992.
    [18] A. A. Ali, “Worst-case partial-band noise jamming of Rician fading channels”, IEEE Trans. Commun., pp. 660-662, Jun. 1996.
    [19] R. C. Robertson, H. Iwasaki and M. Kragh, “Performance of a fast frequency hopped noncoherent MFSK receiver with nonideal adaptive gain control,” IEEE Trans. Commun. vol. 46, no 1, pp.104-114, Jan. 1998.
    [20] G. Huo and M.-S. Alouini, “Another look at the BER performance of FFH/BFSK with product combining over partial-band jammed Rayleigh-fading channels,”
    IEEE Trans. Veh. Technol., vol. 50, no. 5, pp. 1203-1215, Sep. 2001.
    [21] K. S. Gong, “Performance of diversity combining techniques for FH/MFSK in worst case partial band noise and multitone jamming”, Proc. IEEE Military Commun. Conf., pp. 17-21, 1983.
    [22] J. S. Bird, “Error performance of binary NCFSK in the presence of multiple tone interference and system noise,” IEEE Trans. Commun., vol. 33, no. 3, pp. 203-209, March 1985.
    [23] J. S. Bird and E. B. Felstead, “Antijam performance of fast frequency-hopped M-ary NCFSK—An overview,” IEEE J. Select. Areas Commun., vol. SAC-4, no. 2, pp. 216-233, Mar. 1986.
    [24] J. D. Oetting, “The effects of fading on antijam performance requirements,” IEEE J. Select. Areas Commun., vol. SAC-5, no. 2, pp. 155-161, Feb. 1987.
    [25] H. M. Kwon and P. J. Lee, “Combined tone and noise jamming against coded FH/MFSK ECCM radios,” IEEE J. Select. Areas Commun., vol. 8, no. 5, pp. 871-883, June 1990.
    [26] R. E. Ezers, E. B. Felstead, T. A. Gulliver and J. S. Wight, “An analytical method for linear combining with application to FFH NCFSK receivers,” IEEE J. Select. Areas Commun., vol. 11, no. 3, pp. 454-464, Apr. 1993.
    [27] J. J. Chang and L. S. Lee, “An exact performance analysis of the clipped diversity combining receiver for FH/MFSK systems against band multitone jammer,” IEEE Trans. Commun., pp. 700-710, Feb. 1994.
    [28] R. C. Robertson and J. F. Sheltry, “Multiple tone interference of frequency-hopped noncoherent MFSK signals transmitted over Ricean fading channels,” IEEE Trans. Commun., vol. 44, no. 7, pp. 867-875, July 1996.
    [29] K. C. Teh, A. C. Kot and K. H. Li, “Performance analysis of an FFH/BFSK linear-combining receiver against multitone jamming”, IEEE Commun. Lett., pp. 205-207, Aug. 1998.
    [30] K. C. Teh, A. C. Kot and K. H. Li, “Multitone jamming rejection of FFH/BFSK spread-spectrum system over fading channels,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1050-1057, Aug. 1998.
    [31] K. C. Teh, A. C. Kot and K. H. Li, “Performance analysis of an FFH/BFSK self-normalising receiver under multitone jamming”, IEE Proc. Commun., pp. 431-436, Dec. 1998.
    [32] K. C. Teh, A. C. Kot and K. H. Li, “Performance study of a maximum-likelihood receiver for FFH/BFSK systems with multitone jamming”, IEEE Trans. Commun., pp. 766-772, May. 1999.
    [33] K. C. Teh, A. C. Kot and K. H. Li, “Performance analysis of an FFH/BFSK product-combining receiver under multitone jamming,” IEEE Trans. Veh. Technol., vol. 48, no. 6, pp. 1946-1953, Nov. 1999.
    [34] K. C. Teh, A. C. Kot and K. H. Li, “Error probabilities of an FFH/BFSK self-normalizing receiver in a Rician fading channel with multitone jamming,” IEEE Trans. Commun., vol. 48, no. 2, pp. 308-315, Feb. 2000.
    [35] J. Wang and C. Jiang, “Analytical study of FFH systems with square-law diversity combining in the presence of multitone interference,” IEEE Trans. Commun., pp. 1188-1196, July 2000.
    [36] C. Jiang and J. Wang, “Performance analysis of FFH/MFSK receivers with self-normalization combining in presence of multitone jamming,” IEEE Trans. Veh. Technol., vol. 51, no. 5, pp. 1120-1127, Sept. 2002.
    [37] Y.-S. Shen and S.-L. Su, “Performance analysis of an FFH/BFSK receiver with ratio-statistic combining in a fading channel with multitone interference,” IEEE Trans. Commun., vol. 51, no. 10, pp. 1643-1648, Oct. 2003.
    [38] G. Katsoulis and R. C. Robertson, “Performance bounds for multiple tone interference of frequency-hopped noncoherent MFSK systems,” Proc. IEEE Military Commun. Conf., pp. 307-312, 1997.
    [39] T. T. Tjhung and C. C. Chai, “Multitone jamming of FH/BFSK in Rician channels, ”IEEE Trans. Commun., vol. 47, no. 7, pp. 974-978, July 1999.
    [40] Z. Yu, T. T. Tjhung and C. C. Chai, “Independent multitone jamming of FH/MFSK in Rician channels,” IEEE Trans. Commun., vol. 49, no. 11, pp. 2006-2015, Nov. 2001.
    [41] Y.-S. Shen and S.-L. Su, “Performance analysis of an FFH/BFSK receiver with product-combining in a fading channel under multitone interference,” Proc. IEEE Military Commun. Conf., vol. 2, pp. 905-910, 2002.
    [42] Y.-S. Shen and S.-L. Su, “Performance analysis of an FFH/BFSK receiver with self-normalizing combining in a fading channel under independent multitone interference,” Proc. IEEE Global Telecommun. Conf., vol. 2, pp. 1319-1323, 2002.
    [43] J. S. Bird and D. A. George, “The use of Fourier-Bessel series in calculating the error probabilities for digital communication systems,” IEEE Trans. Commun., vol. COM-29, no. 9, pp. 1357-1365, Sept. 1981.
    [44] A. Abdi, H. Hashemi and S. N. Esfahani, “On the PDF of the sum of random vectors,” IEEE Trans. Commun., vol. 48, no. 1, pp. 7-12, Jan. 2000.
    [45] C. W. Helstrom, “Distribution of the sum of two sine waves and Gaussian noise,” IEEE Trans. Inform. Theory, vol. 38, pp. 186-191, Jan. 1992.
    [46] S. Parl, “A new method of calculating the generalized Q function,” IEEE Trans. Inform. Theory, vol. it-26, no. 1, pp. 121-124, Jan. 1980.
    [47] N. M. Steen, G. D. Byrne and E. M. Gelbard, “Gaussian quadratures for integrals of f(x)dx ”, Journal Assoc. Computational Mathematics, 1969.
    [48] D. Kahaner, G. Tietjen and R. Beckman, “Gaussian quadratures formulas for g(x)dx”, Journal Statist. Comput. Simul., vol. 15, pp. 155-160, 1982.
    [49] C. W. Helstrom, Statistical Theory of Signal Detection. New York: Pergamon, 1960, Appendix F.
    [50] A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed. New York: McGraw-Hill, 1991.
    [51] A. D. Whalen, Detection of Signals in Noise. New York: Academic Press, 1971.
    [52] H. L. Van Trees, Detection, Estimation, and Modulation Theory, vol. I, New York: Wiley, 1968.
    [53] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products: Corrected and Enlarged Ed., prepared by Alan Jeffrey. New York: Academic, 1980.
    [54] M. K. Simon, J. M. Omura, R. A. Scholtz, Spread Spectrum Communications Handbook, revised edition. New York: McGraw-Hill, 1995.
    [55] J.G. Proakis, Digital Communication, 2nd Ed., New York: McGraw-Hill book Company, 1989.
    [56] J. M. Wozencraft and I. M. Jacobs, Principle of communications engineering, Ch. 7, New York, 1967.
    [57] G. R. Grimmett and D. R. Stirzaker, Probability and random processes, Oxford Univ. Press, 1992.
    [58] O. C. Yue, “Performance of frequency-hopping multiple-access multilevel FSK systems with hard-limited and linear combining,” IEEE Trans. Commun., vol. COM-29, pp. 1687-1694, Nov. 1981.
    [59] O. C. Yue, “Maximum likelihood combining for noncoherent and differential coherent frequency-hopping multiple-access systems,” IEEE Trans. Inform. Theory, vol. 28, pp. 631-639, July 1982.
    [60] C. P. Hung and Y. T. Su, “Diversity combining considerations for incoherent frequency hopping multiple access systems,” IEEE J. Slect. Areas Commun., vol. 13, pp. 333-344, Feb. 1995.
    [61] Y. T. Su, Y. S. Shen and C. Y. Hsiao, “On the detection of a class of fast frequency-hopped multiple access signals,” IEEE J. Slect. Areas Commun., vol. 19, pp. 2151-2164, Nov. 2001.
    [62] T. Mabuchi, R. Kohno, and H. Imai, “Multiuser detection scheme based on cancelling cochannel interference for MFSK/FH–SSMA system,” IEEE J. Select. Areas Commun., vol. 12, pp. 593-604, May 1994.
    [63] U.-C. G. Figbig, “Iterative interference cancellation for FFH/MFSK MA systems,” IEE Proc.-Commun., vol. 143, pp. 380-388, Dec. 1996.
    [64] U.-C. G. Figbig, “An algorithm for joint detection in fast frequency hopping ststems,” IEICE Trans. Fundamentals, vol. E79-A, pp. 2010-2017, Dec. 1996.
    [65] K. W. Halford and M. Brandt-Pearce, “Multistage multiuser detection for FHMA,” IEEE Trans. Commun., vol. 48, pp. 1550- 1562, Sept. 2000.
    [66] U. C. Fiebig, “On the efficiency of fast frequency hopping multiple-access systems,” Proc. IEEE ICC’92 Conf. Record, pp. 302.2.1-302.2.5, July, 1992.
    [67] P. Yegani and C. D. McGillem, “FH-MFSK multiple-access communication systems performance in the factory environment,” IEEE Trans. Veh. Technol., vol. 42, pp. 148-155, May 1993.
    [68] D. J. Goodman, P. S. Henry, and V. K. Prabhu, “Frequency- hopped multilevel FSK for mobile radio,” Bell Syst. Tech. J., vol. 59, pp. 1257-1275, Sep. 1980.
    [69] G. Einarsson, “Address assignment for a time–frequency–coded, spread–spectrum system,” Bell Syst. Tech. J., vol. 59, pp. 1241-1255, Sept. 1980.
    [70] U. Timor, “Improved decoding scheme for frequency–hopped multilevel FSK system,” Bell Syst. Tech. J., vol. 59, pp. 1839-1855, Dec. 1980.
    [71] U. Timor, “Multistage decoding of frequency-hopped FSK system,” Bell Syst. Tech. J., vol. 60, pp. 471-483, Apr. 1981.

    下載圖示 校內:立即公開
    校外:2004-07-12公開
    QR CODE