簡易檢索 / 詳目顯示

研究生: 褚宗諄
chu, Tsung-Chun
論文名稱: 還原劑添加於回收料之瀝青混凝土工程性質
Engineering Properties of Recycled Asphalt Concrete Mixed with Recycling Agents
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 143
中文關鍵詞: 回收瀝青混凝土(RAP)還原劑(Recycled Asphalt)過多瀝青現象(Negative Asphalt Content)
外文關鍵詞: Reclaimed asphalt pavement(RAP), Recycled asphalts, Negative Asphalt Content
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 回收瀝青混凝土(RAP)具有經濟價值和減少資源浪費之意義,本研究採用拌和場兩種不同老化程度之回收瀝青混凝土作為研究材料,分別為RAP-0.6 (回收瀝青60℃黏度約為600,000 poise)與RAP-1.6 (回收瀝青60℃黏度約為1,600,000 poise),再生劑為RA5、RA75和軟化劑為AC-10與AC-5,並選擇添加AC-20新鮮瀝青之密級配瀝青混凝土作為對照組。
    以不同含量(0%、20%、40%、60%)之回收料添加還原劑(RA5、RA75、AC5、AC10),將目標黏度設定為2000±400 poise,再將瀝青混凝土回收料添加入AC-20基底瀝青與新鮮粒料中拌和,形成再生瀝青混凝土(RAC)。評估添加不同種類的還原劑對RAC之影響,進行穩定值、流度值、間接張力、回彈模數試驗、殘餘強度試驗、車轍輪跡試驗,並探討不同擴散天數之間接張力變化,最後將萃取RAC之瀝青進行黏度、FT-IR、GPC,探討黏結料之物理、化學性質。
    在配合設計流程上因還原劑用量視為瀝青含油量之一部分,在RAP添加比例較高時,使用還原劑會出現過多瀝青現象。當RAP添加比例較高時,會降低其RAC之粒料間孔隙(V.M.A.);同時,也會造成瀝青填充率(V.F.A.)增加的情形,可能形成冒油。拌合過程應選擇中黏度的再生劑(RA75)做使用,可和回收瀝青有較好的拌合效果,同時也提升對抵抗水侵害的能力。績效試驗結果顯示回彈模數與間接張力顯示添加RA75之RAC結果優於其他兩者,因黏度較高,與RAP材料黏度較相近,融合效果較佳;化性試驗結果顯示FT-IR結果顯示酮官能基指標隨著添加RAP越多有上升的趨勢;亞砜官能基則隨RAP添加比例增加而上升,說明了添加RAP越多,老化官能基也較明顯。

    Reclaimed asphalt pavement (RAP) has economical value and can reduce the consumption of resources. In this thesis, RAP of two different aged level are used as the research materials, which are RAP-0.6 (viscosity 600,000 poise under 60℃) and RAP-1.6 (viscosity 1,600,000 poise under 60℃). The rejuvenating agents are RA5 and RA75. The softening agents are AC-10 and AC-5. The control group is the dense-graded asphalt concrete with AC-20.
    Different levels of RAP (0%, 20%, 40%, and 60%) are added to the recycled agents (RA5, RA75, AC5, and AC10) with target viscosity being 2000±400 poise. Then the recycled asphalt concrete (RAC) is formed by mixing the base asphalt AC-20 and fresh aggregates. To evaluate the characteristics of RAC with different recycled agent, the following tests are conducted: stability test, flow test, indirect tension test, resilient modulus test, tensile strength ratio, and track test. The relationship between indirect tension and diffusion time is also discussed. Finally, the physical and chemical properties of asphalt binder extracted from RAC are discussed.
    Because the recycled agent is considered as a part of the asphalt content, using the recycled agent with high RAP ratio will lead to the negative asphalt content and decrease the voids in the mineral aggregate (V.M.A). In the meanwhile, the voids filled with asphalt (V.F.A) will also increase, which may cause bleeding. In RAP mixing process, the recycled agent with medium viscosity (RA75) should be chosen in order to obtain better mixing effect and higher resistant to moisture damage. The performance test results show that the RAC adding with RA75 are better than other counterparts in resilient modulus and indirect tension strength. Because RA75 has higher viscosity which is close to RAP’s, the mixing effect is better. Finally, FT-IR result shows that the content of the aged functional group (ketone index and sulfoxide index) increases with the increment of RAP content.

    目錄 摘要……………………………………………………………………......….i abstract………………………………………………………………………iii 致謝……………………………………………………………………….…..v 目錄……………………………………………………………...….........…vii 表目錄…………………………………………………………………........xii 圖目錄…………………………………………………………….…..........xiv 第一章 緒論…………………………………………………………........1-1 1.1 前言…………………………………………………………….......1-1 1.2 研究動機…………………………......…………………………….1-3 1.3 研究目的………………………………......……….………………1-3 1.4 研究範圍……………………………….......………………………1-4 第二章 文獻回顧…………………………………......…………………..2-1 2.1 瀝青之化學組成………......…………………………………….…2-1 2.2 瀝青還原劑………………......……………………….……………2-3 2.3 再生劑規範……………………......………………….……………2-5 2.4 瀝青混凝土回收料…………………......…………………….……2-8 2.4.1 瀝青混凝土回收料添加比例……......…………………...…2-8 2.4.2 瀝青混凝土回收料的黏結料性質……......………………...2-9 2.4.3 瀝青混凝土回收料的粒料性質……………......………….2-10 2.4.4 瀝青混凝土回收料的變異性………......…………….……2-11 2.4.5 瀝青混凝土回收料的取樣方式…………………….......…2-11 2.4.6 瀝青混凝土回收料的黑石頭行為…………………......….2-13 2.4.7 決定瀝青混凝土回收料之體積比重……………….......…2-15 2.5 再生瀝青混凝土配合設計理論與相關研究……………..…......2-15 2.6 再生瀝青混凝土與傳統瀝青混凝土之差異……………..…......2-17 2.7 添加還原劑於回收瀝青混凝土之成效……………………........2-19 第三章 研究計畫……………………………….………………….…......3-1 3.1 研究方法……………………………………………………….......3-1 3.2 實驗材料……………………………………….....…….……….…3-4 3.2.1 RAP材料特性…………………………….…....………....…3-4 3.2.2瀝青膠泥和回收瀝青黏結料特性………….......……………3-6 3.2.3 再生劑特性…………………………………......…...………3-6 3.3 回收瀝青萃取試驗…………………………………......…….……3-8 3.4 回收瀝青膠泥試驗…………………......…………………….……3-9 3.4.1 動態剪切流變儀………………......………………...………3-9 3.4.2 傅立葉轉換紅外線光譜儀………......…………………….3-10 3.4.3凝膠滲透層析儀……………….......……………………..…3-15 3.5 再生瀝青混凝土配合設計流程………......…………………..…3-19 3.5.1 粒料級配與近似瀝青含油量決定(AI MS-2)…......………3-19 3.5.2再生劑添加含量……………………………….......………..3-21 3.5.3 再生瀝青混凝土體積比重估計…………....……..……….3-23 3.5.4 RAC拌合溫度與程序……………………………......…….3-24 3.6 再生瀝青混凝土工程性質……………….…………...………….3-25 3.6.1 穩定值、流度值…………………….………......………….3-25 3.6.2 回彈模數試驗……………………………………...……….3-26 3.6.3 間接張力試驗………………......………………………….3-27 3.6.4 殘餘強度試驗……………………......………...…………..3-29 3.6.5 吸收能…………………………………......……………….3-30 3.6.6 車轍輪跡試驗………………………………......………….3-30 3.7 符號說明……………………………………......………………..3-34 第四章 試驗結果與討論………………………………......……………..4-1 4.1 材料基本物性試驗…………………………………......………….4-1 4.2 再生劑和軟化劑添加含量之決定………………......……….……4-2 4.3 RAC配合設計流程………………………………….....……….….4-7 4.3.1 決定RAP粒料比重……………………….......…………….4-7 4.3.2 RAC粒料級配…………………………......………………...4-7 4.3.3 決定RAC配合設計瀝青含量…………......…………….....4-9 4.3.4 決定最佳瀝青含油量………………………......................4-11 4.3.5 過多瀝青………………………………….........................4-12 4.3.6 AI MS2方法…………………………………………..........4-15 4.3.7 過多瀝青探討…………………………………................. 4-19 4.4 RAC工程性質結果………………………………….................. 4-21 4.4.1 馬歇爾穩定值…………………………………..................4-21 4.4.2 馬歇爾流度值………………………......…………............4-27 4.4.3 間接張力…………………………………......……............4-32 4.4.4 回彈模數值……………………………………..................4-37 4.4.5 殘餘強度比值…………………………………..................4-42 4.4.6 長期間接張力…………………………………..................4-46 4.4.7 車轍試驗………………………………………...………….4-48 4.5 孔隙率與RAP添加比例關係……….………………......………4-49 4.5.1 V.M.A.與RAP添加比例關係….………………......………4-49 4.5.2 V.F.A.與RAP添加比例關係…..………………......………4-51 4.6 萃取自RAC黏結料之化學性質……….…………….....………4-52 4.6.1 傅立葉轉換紅外線光譜儀………….……………......……4-52 4.6.2 高效能凝膠滲透層析儀………………….………......……4-54 4.6.3 軟化點與針入度………………….……………......………4-57 第五章 結論與建議………………………………………..…......………5-1 5.1 結論…………………………….…………………......……………5-1 5.2 建議………………………………….…………………......………5-3 參考文獻……………………………………..……………......…………參-1

    中華鋪面工程學會 (2004) 「近代新瀝青混凝土路面材料及產製鋪設技術」,桃園。
    林志棟、廖溪坤、林秉祁、王睿懋,「台灣地區再生瀝青混凝土成效規範初步擬定之研究」,土木水利,第二十七卷,第三期,2000。
    李賢義 (1985) 「瀝青混凝土廢料添加軟化劑與車轍變形量之關係研究」,工程月刊,第30-40頁。
    杜逸虹 (1983) 聚合體學(高分子化學),三民書局
    姜榮彬 (1993) 「再生瀝青原理與應用」,第一屆鋪面材料再生學術研討會,第191-200頁。
    沈勝正、吳惠聰、陳皇鈞、張建雄(1988),「舊瀝青路面回收及再生利用之研究」,中華工程股份有限公司研究報告,共79頁。
    蔡攀鰲(2002),「再生瀝青混凝土拌合廠審查認可基準」,再生瀝青混凝土實務講習,中華鋪面工程學會,台南,第1-19頁。
    蔡攀鰲(1979),「瀝青鋪面材料再利用之研究」,土木水利,中第六卷,第一期,第49-58頁。
    黃碩偉(2012),「還原劑添加於回收瀝青混凝土之黏結料性質」,國立成功大學土木工程研究所碩士論文,台南。
    American Society for Testing and Materials (2011). Standard Practice for Preparation of Viscosity Blends for Hot Recycled Asphalt Materisls, ASTM D4887/D4887M – 11.
    Asphalt Institute (1993) “Mix Design Using RAP,” Mix Design Methods, Asphalt Institute Manual Series No.2(MS-2), Sixth Edition, pp.123-136.
    Boukir A., Guiliano, M., Asia, L., Hallaoui, A.E., and Mille, G. (1998) "A Fraction ot Fraction Study of Photo-Oxidation of BAL 150 Crude Oil Asphaltenes." Analusis, Vol.26, pp.358-364
    Gradiner, M.S. and Wagner, C., (1999) “Use of Reclaimed Asphalt Pavement in Superpave Hot-Mix Asphalt Application,” Transportation Research Record: Journal the Transportation Research Record, No.1681, pp. 30-34.
    Hadipour, K. and Anderson, K.O. (1988) “An Evaluation of Permanent Deformation and Low Temperature Characteristics of Some Recycled Asphalt Concrete Mixture,” Journal of the Association of Asphalt Paving Technologists, Vol.57, pp.615-645.
    Hong, F., Chen, D.H., and Mikhail, M.M. (2010) “Long-Term Performance Evaluation of Recycled Asphalt Pavement Results from Texas,” Transportation Research Record: Journal of the Transportation Research Board, No. 2180., pp.58-66.
    Kuang, D., Feng, Z., Zhang, H., and Yu, j. (2011) “Effect of Rejuvenators on Performance of Recycle Hot Mix Asphalt Mixture,” Journal of Applied Mechanics and Materials, Vol.71-78, pp. 1068-1072.

    Lamontagne, J., Dumas, P., Mouillet, V. and Kister, J. (2001) "Comparison by Fourier Transform Infrared (FTIR) Spectroscopy of Different Ageing Techniques : Application to Road Bitumens," Fuel, Vol. 80, pp. 483-488.

    Li, X., Marasteanu, M.O., Williams, R.C., and Clyne, T.R. (2008) “Effect of RAP(Proportion and Type) and Binder Grade on the Properties of Asphalt Mixture,” 87th Annual Meeting of the Transportation Research Board, CD-ROM, pp.1-16.
    McDaniel, R., and R. M. Anderson. (2001) Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method:Technician's Manual., NCHRP 452 Report National Reaearch Council, Washinton, D.C..
    Maupin, G. W., Jr., Diefenderfer, S. D., and Gillespie, J. S. (2009) “Virginia’s Higher Specification for Reclaimed Asphalt Pavement Performance and Economic Evaluation,” Transportation Research Board: Journal the Transportation Research Board, No. 2126 , pp. 142–150.
    Meng, X., Yuzhen, Z., Fuqi, L., and Weimin, G. (2012) “Study of Rejuvenators’ Diffusion into Aged Asphalts,” International Symposium on Antennas and Propagation.
    Noureldin, A.S., and Wood, L.S. (1989) "Variations in Molecular Size Distribution of Virgin and Recycled Asphalt Binders Associated with Aging," Transportation Research Record:Journal of the Transportation Research Board, No.1228, pp.191-197.

    Randy, W., Jenna, M., Rod, T., and Saeed, M. (2011) “A Comparison of Virgin and Recycled Asphalt Pavements Using Long-Term Pavement Performance SPS-5 Data,” 2011 Annual Meeting of the Transportation Research Board.
    Read, J. and Whiteoak, D. (2003). The Shell Bitumen Handbook, Shell Bitumen, UK.
    Shah, A., Mcdaniel, R.S., Huber, G.A., Gallivan, V.L. (2007) “Investigation of Properties of Plant-Produced Reclaimed Asphalt Pavement Mixture,” Transportation Research Record: Journal of Transportation Board, No. 1998, pp.103-111.
    Shen, J., Huang, B. and Hachiya Y. (2004) “Validation of Performance Based Method for Determining Rejuvenator Content in HMA,” The International Journal of Pavement Engineering, Vol. 5 (2) June 2004, pp. 103–109.
    Shen, J., Armikhanian, S., and Tang,B. (2007) “Effects of Rejuvenator on Performance-based Properties of Rejuvenated Asphalt Binder and Mixtures,” Construction and Building Materials, Vol.21, pp.958-964.
    Sondag, M.S., Chadbourn, B.A. and Drescher, A. (2002) Investigation of Recycled Asphalt Pavement (RAP) Mixtures, Final Report, Minnesota Department of Transportation, Twin City.
    Soleymani, H.R., Anderson, M., Mcdaniel, R. and Abdelrahman, M., (2000) ”Investigation of the Black Rock Issue for Recycled asphalt Mixture,” Journal of the Association of Asphalt Paving Technologists, Vol. 69, pp. 366-390.

    Skoog, D.A., James Holler, F. and Nieman, T.A., (1997) Principles of Instrumental Analysis, Saunders Golden Sunburst Series, Fifth Edition.
    Skoog, D.A., Holler, F.J., and Crouch, S.R. (2007) Principle of Instrumental Analysis, Thomson Brooks/Cole, 6th edition, CA, Ch.16A
    Tabaković, A., Gibney, A., Mcnally, C., and gilchrist, M. D. (2010) “Influence of Recycled Asphalt Pavement on Fatigue Performance of Asphalt Concrete Base Course,” Journal of Materials in Civil Engineering, Vol. 22, pp. 643-650.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE