| 研究生: |
李育杰 Lee, Yu-Chieh |
|---|---|
| 論文名稱: |
波前感測與光束整形之研發 R&D of Wavefront Sensing and Beam Shaping |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | Shack-Hartmann波前感測器 、光束整形 、π Shaper 、空間光調變器 、反覆傅立葉轉換演算法 |
| 外文關鍵詞: | Shack-Hartmann wavefront sensor, beam shaping, π Shaper, spatial light modulator, iterative Fourier transform algorithm |
| 相關次數: | 點閱:172 下載:26 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在雷射的眾多應用中,經常因為光強呈現高斯分布,而造成許多應用上的限制,因此需要光束整形的技術來將原本分布不均勻的光強,經過系統後改變成光強分布均勻的平頂光束。本論文分別用市售的被動式光束整形器π Shaper以及空間光調變器(spatial light modulator,SLM)構成的主動式光束整形來達成此目的,並搭配自製的Shack-Hartmann波前感測器(Shack-Hartmann wavefront sensor,SHWS)來了解波前的變化情形。自製SHWS的波前感測部分是藉由感光耦合元件(charge coupled device,CCD)與微透鏡陣列的組合,量測CCD上的聚焦光點偏移位置得到波前資訊,接著以Zernike模型重建波前。
被動式光束整形器是運用折射的影響,藉由多組非球面透鏡組的組合來改變光強的分布情形,這邊直接使用光束整形器π Shaper來實作,並與實驗室的系統結合,量測螢光試片的螢光強度分布情形。而主動式光束整形則是藉由繞射的方式,利用電腦來計算反覆傅立葉轉換演算法(iterative Fourier transform algorithm)並模擬出全像片與結果,這邊分別針對三種演算法模擬:Gerchburg-Saxton、adaptive-additive和mixed region amplitude freedom,並且用模擬產生的全像片拿來顯示於SLM上進行實作,而得到了初步的光束整形成果。
Some laser applications are limited due to the Gaussian distribution intensity. A beam shaping technique is attempted to convert the original non-uniform distribution of intensity to a uniform flat-top distribution beam. Both of the commercial passive π Shaper and active spatial light modulator (SLM) are adopted for beam shaping. A lab-made Shack-Hartmann wavefront sensor (SHWS) has been developed for detecting wavefront variation. The wavefront information is analyzed by positioning the focal spot shift on a charge-coupled device (CCD), and uses the Zernike polynomial model to reconstruct the wavefront data. The passive π Shaper is applied by refraction effect, using several pairs of aspheric lens to modify the intensity distribution. Furthermore, the active way is applied with diffraction effect, using iterative Fourier transform algorithm to simulate the hologram and compared with three kinds of algorithm: Gerchburg-Saxton (GS), adaptive-additive (AA), and mixed region amplitude freedom (MRAF). The hologram is applied on the SLM to modify the beam intensity profile and the preliminary results are demostrated.
[1] C. Liu and S. Zhang, “Study of singular radius and surface boundary constraints in refractive beam shaper design,” Opt. Express 16, 6675-6682 (2008).
[2] H. Ma, Z. Liu, P. Zhou, X. Wang, Y. Ma, and X. Xu, “Generation of flat-top beam with phase-only liquid crystal spatial light modulators,” J. Opt. 12, 045704 (2010).
[3] J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39, 5488-5499 (2000).
[4] M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176-2190 (2008).
[5] X. Tan, B.-Y. Gu, G.-Z. Yang, and B.-Z. Dong, “Diffractive phase elements for beam shaping: a new design method,” Appl. Opt. 34, 1314-1320 (1995).
[6] B. R. Frieden, “Lossless conversion of a plane laser wave to a plane wave of uniform irradiance,” Appl. Opt. 4, 1400-1403 (1965).
[7] F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).
[8] B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573-S577 (2001).
[9] J. Schwiegerling and D. R. Neal, “Historical development of the Shack-Hartmann wavefront sensor,” R. Shannon and R. Shack: Legends in Applied Optics, edited by J. E. Harvey and R. B. Hooker, 132-139 (SPIE, 2005).
[10] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1970).
[11] C. Curatu, G. Curatu, and J. Rolland, “Fundamental and specific steps in Shack-Hartmann wavefront sensor design,” SPIE 6288, 628801 (2006).
[12] C. Li, M. Xia, Z. Liu, D. Li, and L. Xuan, “Optimization for high precision Shack-Hartmann wavefront sensor,” Opt. Commun. 282, 4333-4338 (2009).
[13] D. R. Neal, J. Copland, and D. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” SPIE 4779, 148-160 (2002).
[14] G.-M. Dai, “Model wave-front reconstruction with Zernike polynomials and Karhunen-Loève functions,” J. Opt. Soc. Am. 13, 1218-1225 (1996).
[15] S. S. Niu, J. X. Shen, C. Liang, and B. M. Li, “Human eye aberration measurement and correction based on micro adaptive optics system,” IEEE Eng. Med. Biol. 3, 1023-1207 (2009).
[16] http://www.edmundoptics.com
[17] http://www.analog.com/en/index.html
[18] F. M. Dickey, L. S. Weichman, and R. N. Shagam, “Laser beam shaping techniques,” SPIE 4065, 338-348 (2000).
[19] A. Laskin, “Achromatic refractive beam shaping optics for broad spectrum laser applications,” SPIE 7430, 743003 (2009).
[20] http://www.pishaper.com/index.html
[21] L.-C. Cheng, C.-H. Lien, Y. D. Sie, Y. Y. Hu, C.-Y. Lin, F.-C. Chien, C. Xu, C. Y. Dong, and S.-J. Chen, “Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device,” Biomed. Opt. Express 5, 2526-2536 (2014).
[22] R. Santoso, 2D Optical Trapping Potential for the Confinement of Heteronuclear Molecules, Thesis (National University of Singapore, 2014).
[23] http://www.jasperdisplay.com
[24] A. Márquez, I.Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, “Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization,” Opt. Express 16, 1669-1685 (2008).
[25] H. Kim, B. Yang, and B. Lee, “Iterative Fourier transform algorithm with regularization for the optimal design of diffractive optical elements,” J. Opt. Soc. Am. 21, 2353-2365 (2004).