簡易檢索 / 詳目顯示

研究生: 郭華皓
Kuo, Hua-Hao
論文名稱: 電化學蝕刻技術應用於靜電式微致動器之研製
Fabrication of electrostatical microactuator by electrochemical etching technique
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 118
中文關鍵詞: 微機電技術靜電式微梳狀致動器界面活性劑電化學蝕刻感應耦合電漿離子蝕刻
外文關鍵詞: Micro Electro Mechanical System (MEMS), Electrostatic micro comb-driver actuator, surfactant, Electrochemical etching (ECE), Inductively coupled plasma reactive ion etching
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統上,利用微機電技術製作高深寬比之矽微結構時,多是以乾式蝕刻中之感應耦合電漿離子蝕刻(ICP-RIE)技術來完成,但由於此套製程設備成本相當的昂貴(約1200~2000萬/台),再加上其加工及維護成本均高,所以在一般學術單位中取得並不容易。
    基於上述,本研究利用自行開發之低成本電化學蝕刻(ECE)設備,順利測得相關製程之最佳參數。由實驗結果已驗證,在利用電化學蝕刻技術製作高深寬比微孔洞陣列方面,當蝕刻時間達到7小時,可得高深寬比達約40左右之結構,證明利用此技術已能局部取代乾式蝕刻之應用領域。除此之外,藉由相關製程參數的調變,更能達成微懸浮結構之製作。
    在以電化學蝕刻技術製作靜電式微梳狀致動器方面,本研究於結構中利用結構補償(開放及輔助結構)之方式,順利克服電化學蝕刻時,結構尺寸限制及底切的問題。另外,在蝕刻液中添加兩種不同性質的界面活性劑,對於因蝕刻造成的底切現象及結構側壁之保護,有相當顯著的幫助。因而大幅地提升利用電化學蝕刻技術製作微機電元件之可行性。
    最後在利用電性驅動微梳狀致動器時,在電極距4 m、梳子重疊長度28 m及梳子長度為32 m之微梳狀致動器方面,以2.2V之交流電驅動下,其單邊最大的致動距離可達2 m左右的行程。由此一結果,成功地實現利用電化學蝕刻技術製作靜電式微致動器之最終目的。

    Traditionally, we usually use the inductively coupled plasma reactive ion etching (ICP-RIE) technology of dry etching when fabricating high aspect of silicon structures in Micro Electro Mechanical System (MEMS). However,the fabricating equipment is very expensive (about 12-20 millions each set) and the costs of manufacturing and maintaining the equipments are quite high. Therefore, it,s not easy to get this equipment in common science departments.
    Because of the above-mentioned, this research used the low-cost electrochemical etching (ECE) equipment developed by ourselves and got the best parameters of the related manufacture. The experiment result proved that the technology had been able to partially replace the dry etching technology. Using the ECE technology to fabricate high aspect of micro-pores array, we can get the structures of high aspect about 40 when the etching time reached 7 hours. Besides, we can make the micro free standing structures by adjusting the correlated parameters.
    In the dimension of fabricating the electrostatic micro comb-driver actuator with the ECE technology, this research had successfully resolved the problem of size limit and under-cutting in ECE by using the compensated structures (open and assisted structures). In the other hand, it worked obviously to improve the under-cutting situation and side-wall protection in etching by adding two surfactants of different characters in the etching solution. Consequently, the possibility to fabricate the element of MEMS with ECE technology became higher.
    At last, when we used the electrostatic micro comb-drive actuator of 4 m electrode gap, 28 m folded beam length and 32 m comb finger length, the maximum unilateral driving distance could be about 2 m with 2.2 V alternating current. Thus it can be seen that we had achieved the final purpose of using the ECE technology to fabricate the electrostatic micro actuator.

    摘 要 I 誌 謝 IV 目 錄 V 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 緒論 1 1.1 微機電系統簡介 1 1.2 電化學蝕刻簡介 5 1.3 論文架構 8 第二章 文獻回顧與理論探討 9 2.1 高深寬比矽基微細加工技術 12 2.1.1濕式矽蝕刻技術 12 2.1.2乾式矽蝕刻技術 14 2.2 多孔矽在電解液中的電流-電壓(I-V)特性 20 2.3 電化學蝕刻之多孔矽成形機制 26 2.4 電化學掏空機制 37 2.5 研究動機與目的 38 第三章 實驗方法與規劃 41 3.1 實驗規劃 41 3.1.1 電化學蝕刻之前製程 42 3.2 實驗裝置 49 3.3 實驗與量測設備 51 第四章 實驗結果與討論 61 4.1 預蝕刻對電化學的影響 61 4.2 界面活性劑對預蝕刻及電化學蝕刻之影響 66 4.2.1非離子型界面活性劑(BR)對預蝕刻之影響 66 4.2.2陽離子型界面活性劑(DC)對電化學蝕刻之影響 67 4.3 電流密度與蝕刻時間的影響 71 4.4 微懸浮結構之製作 80 4.5 微梳狀致動器之製作 83 4.5.1靜電式微梳狀致動器光罩之設計 83 4.5.2靜電式微梳狀致動器之製作 89 4.5.3新改良之靜電式微梳狀致動器光罩設計 94 4.5.4新改良之靜電式微梳狀致動器製作 97 4.5.5電性驅動 105 第五章 結論與未來展望 109 5.1 結論 109 5.2 未來展望 111 參考文獻 112 自 述 118

    1.楊啟榮, "微機電系統原理與應用", 國立台灣師範大學上課講義 (2003).
    2.楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp. 141-319 (2003).
    3.M. D. B. Charlton, H. W. Lau, and G. J. Parker, "High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures", IEE Colloquium on Microengineering Applications in Optoelectronics, pp. 1-9 (1996).
    4.A. Satoh, "Formation of through-holes on silicon wafer by optical excitation electropolishing method", Japanese Journal of Applied Physics, Vol. 39, pp. 378-386 (2000).
    5.V. Lehmann and H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n-type silicon", Journal of the Electrochemical Society, Vol. 137, pp. 653-658 (1990)
    6.V. Lehmann and U. Grüning, "The limits of macropore array fabrication", Thin Solid Films, Vol. 297, pp. 13-17 (1997).
    7.V. Lehmann, "The physics of macropore formation in low-doped n-type silicon", Journal of the Electrochemical Society, Vol. 140, pp. 2836-2843 (1993).
    8.V. Lehmann, "Porous silicon formation and other photo-electrochemical effects at silicon electrodes anodized in hydrofluoric acid", Applied Surface Science, Vol. 106, pp. 402-405 (1996).
    9.V. Lehmann, "Porous silicon-a new material for MEMS", Proc. of Micro Electro Mechanical System Workshop, California, USA, pp. 1-6 (1996).
    10.A. Uhir, "Electrolytic shaping of germanium and silicon", Bell System Technical Journal, Vol. 35, pp. 333-547 (1956).
    11.S. Izuo, H. Ohji, and P. J. French, "A novel electrochemical etching technique for n-type silicon", Sensors and Actuators A, Vol. 97, pp. 720-724 (2002).
    12.G. Barillaro, A. Nannini, and M. Piotto, "Electrochemical etching in HF solution for silicon micromachining", Sensors and Actuators A, Vol. 102, pp. 195-201 (2002).
    13.H. Ohji, P.J. French, and K. Tsutsumi, "Fabrication of mechanical in p-type silicon using electrochemical etching", Sensors and Actuators, Vol. 82, pp. 254-258 (2000).
    14.H. Ohji, P.J. Trimp, and P.J. French, "Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid", Sensors and Actuators, Vol. 73, pp. 95-100 (1999).
    15.H.R. Robbins and B. Schwartz, "Chemical etching of silicon-I. The system HF, HNO3, H2O, and HC2C3O2", Journal of the Electrochemical Society, Vol. 106, pp. 505-508 (1959).
    16.H.R. Robbins and B. Schwartz, "Chemical etching of silicon-II. The system HF, HNO3, H2O, and HC2C3O2", Journal of the Electrochemical Society, Vol. 107 (2), pp. 108-111 (1960).
    17.B. Schwartz and H. R. Robbins, "Chemical etching of silicon-III. A temperature study in the acid system", Journal of the Electrochemical Society, Vol. 108, pp. 365-372 (1961).
    18.G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, "Bulk Micromachining of Silicon", Proceedings of the IEEE, Vol. 86, pp. 1536-1551 (1998).
    19.M. Elwenspoek, "The form of etch rate minima in wet chemical anisotropic etching of silicon", Journal of Micromechanical and Microengineering, Vol. 6, pp. 405-409 (1996).
    20.B. Schwartz and H. R. Robbins, "Chemical etching of silicon", Journal of the Electrochemical Society, Vol. 123, pp. 1903-1909 (1976).
    21.A. F. Bogenschutz, W. Krusemark, K.H. Locherer, and W. Mussinger, "Activation energies in the chemical etching of semiconductors in HNO3-HF-CH3COOH", Journal of the Electrochemical Society: Solid State, Vol. 114, pp. 970-973 (1967).
    22.L. Walter, "Silicon microstructuring technology", Materials science and engineering, Vol. 17, pp. 1-55 (1996).
    23.D. B. Lee, "Anisotropic etching of silicon", Journal of Applied physics, Vol. 40, pp. 4569-4574 (1969).
    24.P. J. Hesketh, C. Ju, and S. Gowda, "Surface free energy model of silicon anisotropic etching", Journal of the Electrochemical Society, Vol. 140, pp. 1080-1084 (1993).
    25.H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer", Journal of the Electrochemical Society, Vol. 137, pp. 3612-3626 (1990).
    26.H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon", Journal of the Electrochemical Society, Vol. 137, pp. 3626-3632 (1990).
    27.D. R. Ciarlo, "Corner compensation structures for (110) oriented silicon", IEEE Micro Robots and Teleoperators Workshop, pp. 1-4 (1987).
    28.O. Powell and H B. Harrison, "Anisotropic etching of {100} and {110} planes in (100) silicon", Journal of Micromechanics and Microengineering, Vol. 11, pp. 217-220 (2001).
    29.鍾震桂 等人, "感應耦合電漿的矽非均性蝕刻技術", 第三屆奈米工程暨微系統技術研討會, Vol. 3, pp. 83-87 (1999).
    30.R. B. Bosch Gmbh, U.S. patents No.4855017, U.S. patents No.4784720, and Germany Patent No. 4241045C1 (1994).
    31.M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, "Recent advances in silicon etching for MEMS using the ASE process", Sensors and Actuators A, Vol. 74, pp. 13-17 (1999).
    32.J. K. Bhardwaj and H. Ashraf, "Advanced silicon etching using high density plasmas", SPIE, Vol. 2639, pp. 225 (1995).
    33.楊啟榮 等人, "微系統類LIGA製程光刻技術", 科儀新知, Vol. 22, pp. 33-45 (2001).
    34.R. L. Smith and S. D. Collins, "Porous silicon formation mechanisms", Journal of Applied Physics, Vol. 71, pp. 1-22 (1992).
    35.V. Lehmann and S. Ronnebeck, "The physics of macropore formation in low-doped p-type silicon", Journal of the Electrochemical Society, Vol. 146, pp. 2968-2975 (1999).
    36.吳浩青 等人, "電化學動力學", 科技圖書股份有限公司, pp. 179-183 (2001).
    37.X. Badel, "Electrochemically etched pore arrays in silicon for X-ray imaging detectors", Ph.D Thesis, The Royal Institute of Technology, pp. 4-21 (2005).
    38.M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, "An experimental and theoretical study of the formation and microstructure of porous silicon", Journal of Crystal Growth, Vol. 73, pp. 622-636 (1985).
    39.M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, "Microstructure and formation mechanism of porous silicon", Applied Physics Letters, Vol. 46, pp. 86-88 (1985).
    40.X. G. Zhang, S. D. Collins, and R. L. Smith, "Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution", Journal of the Electrochemical Society, Vol. 136, pp. 1561-1565 (1989).
    41.X. G. Zhang, "Mechanism of pore formation on n-type silicon", Journal of the Electrochemical Society, Vol. 138, pp. 3750-3756 (1991).
    42.T. Unagami, "Formation mechanism of porous silicon layer by anodization in HF solution", Journal of the Electrochemical Society, Vol. 127, pp. 476-483 (1980).
    43.R. L. Smith, S. F. Chuang, and S. D. Collins, "A theoretical model of the formation morphologies of porous silicon", Journal of Electronic Materials, Vol. 17, pp. 533-541 (1988).
    44.C. S. Solanki, R. R. Bilyalov, H. Bender, and J. Poortmans, "New approach for the formation and separation of a thin porous silicon layer", Physica Status Solidi, Vol. 182, pp. 97-101 (2000).
    45.A. Halimaoui, "Influence of wettability on anodic bias induced electroluminescence in porous silicon", Applied Physics Letters, Vol. 63, pp. 1264-1266 (1993).
    46.C. S. Solanki, R. R. Bilyalov, J. Poortmans, J. P. Celis, J. Niji, and R. Mertens, "Self-standing porous silicon films by one-step anodizing", Journal of the Electrochemical Society, Vol. 151, pp. 307-314 (2004).
    47.C. Scheibe and E. Obermeier, "Compensating corner undercutting in anisotropic etching of (100) silicon for chip separation", J. Micromech. Microeng, Vol. 5, pp. 109-111 (1995).
    48.C. C. Huang, J. Papp, K. Najafi, and H. M. Nagib, "A microactuator system for the study and control of screech in high speed jets", Proc. of Micro Electro Mechanical System Workshop, California, USA, pp. 19-24 (1996).
    49.C. C. Chen and C. K. Lee, "Design and modeling for comb drive actuator with enlarged static displacement", Sensors and Actuators A, Vol. 115, pp. 530-539 (2004).
    50.R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, "Comb-drive actuators for large displacements", J. Micromech. Microeng, Vol. 6, pp. 320-329 (1996).

    無法下載圖示 校內:2056-08-07公開
    校外:2056-08-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE