| 研究生: |
游本立 You, Pen-li |
|---|---|
| 論文名稱: |
應用於 60GHz 射頻收發機之CMOS差動式壓控震盪器的研製 Design of CMOS Differential Voltage-Controlled Oscillators for 60-GHz RF Transceiver |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 微波 、無線網路 、壓控震盪器 、駐波 |
| 外文關鍵詞: | microwave, VCO, wireless network, standing wave |
| 相關次數: | 點閱:148 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在西元2001 年,美國聯邦通訊委員會(Federal Communication Commission, FCC)開放57-GHz到64-GHz(共7-GHz 頻寬)給高速無線通訊應用使用。由於是不需註冊使用的免付費頻帶,預料將帶來許多的商機。近幾年來,已有少數利用SiGe BiCMOS 製程與 III-V半導體製程的60-GHz WPAN收發機被順利研發成功。此外,由於CMOS技術不斷的演進,因此其Cut-off頻率甚至已經高達60-GHz ~ 100-GHz。然而,以CMOS來實現這樣的電路仍然存在著許多挑戰。因此,本論文首先簡介60-GHz WPAN 的架構與說明一些重要常用之射頻被動元件如變容器(Varactors)與平面螺旋電感(Planar spiral inductors)的特性。此外,基本的傳輸線觀念也在此簡略的描述。由於想找出甚麼樣的壓控振盪器架構最適合我們在60-GHz WPAN上的需求;因此我們對目前常見的壓控振盪器架構做了廣泛性的比較。藉由比較的結果,我們實際製作了兩顆分別工作於K 及 Ka 頻帶的壓控振盪器去驗證我們當初的假設。首先,我們利用0.18um 標準 RF CMOS製程完成了一顆可操作在K頻帶的壓控振盪器。為了具有較好的特性,我們利用了駐波觀念的技巧。藉著駐波的架構,在20.8 GHz 的操作頻率下,相位雜訊在1MHz位移頻率時皆有-113 dBc/Hz以下的表現。接著,我們利用相同的製程完成了一顆可操作於Ka頻帶的壓控振盪器。藉由一些特殊的技巧與想法,由量測結果顯示一個可適用於60-GHz WPAN下應用的27.03 GHz壓控振盪器,其在位移頻率為1MHz時相位雜訊具有-115 dBc/Hz以下的表現。最後,我們可以使用倍頻技巧,則這個壓控振盪器恰好適用於60-GHz WPAN下的應用。
In 2001, FCC (American Federal Communication Commission, FCC) has opened the mm-wave band of 57-GHz ~ 64-GHz (total 7-GHz bandwidth) for the application of high speed wireless communication use. Because of this frequency band is unlicensed, it is expected that there are a lot of businesses opportunities. Recently, several transceivers ICs have been implemented in SiGe BiCMOS and III-V compound semiconductor technologies for the 60-GHz WPAN application. Additionally, because that the performance of CMOS processes is improving consistently, the cut-off frequencies (i.e. the transistors operation frequency at which the current gain of transistor is unity) of CMOS are up to 60-GHz ~ 100-GHz. This makes mm-wave CMOS transceivers be possible. Nevertheless, it still remains some challenges for such transceiver circuits to be integrated by a standard CMOS process.
Consequently, this thesis introduces the 60-GHz WPAN structure and discusses the characteristics of the passive RF elements such as varactors and planar spiral inductors. Furthermore, the fundamental of transmission line has been stated. In order to chose the best VCO circuit type for the requirement of 60-GHz WPAN applications, we make a widely comparison among a variety types of VCO. Accordingly, we implement the design of VCOs for K-band and Ka-band, respectively, to justify our ideas. Firstly, a K-band VCO is demonstrated in a standard 0.18 um RF CMOS 1P6M technology. In order to achieve the better performance, the standing-wave based technique is adopted. A phase noise better than -113 dBc/Hz at 1MHz offset is achieved at the operation frequency of 20.8 GHz. Secondly, a Ka-band VCO is demonstrated also in the same process. By some techniques and ideas, an improved experimental result exhibits a phase noise -115 dBc/Hz at 1MHz offset is achieved when the operation frequency is 27.03 GHz. Using the frequency multiple techniques, this VCO is suitable for the 60-GHz WPAN applications.
[1] H. S. Momose, E. Morifuji, T. Yoshitomi, T. Ohguro, M. Saito, and H. Iwai, “Cutoff frequency and propagation delay time of 1.5-nm gate oxide CMOS,” IEEE Trans. on Electron Devices, vol. 48, no.6, pp.1165-1174, June 2001.
[2] 陳福騫,” RF IC 製程技術的發展現況與趨勢探討”, 拓墣產業研究所週報,June 30, 2003.
[3] Doan C.H., Emami S., Sobel D.A., Niknejad A.M., Brodersen R.W., “Design considerations for 60 GHz CMOS radios,” Communications Magazine, IEEE Volume 42, Issue 12, Dec. 2004 Page(s):132 – 140
[4] http://www.ieee802.org/15/pub/TG3c.html
[5] Lowrence Williams, Daniel Wu, Eldon Staggs and Albert Yen, “ Ultra-Wideband Radio Design for Multi-band OFDM 480Mb/s Wireless USB” ; Ansoft Co. and UMC Co.
[6] B. Razavi, Design of Analog CMOS Integrated Circuits, MeGraw-Hill companies, New York USA, 2001
[7] 蔣宗佑,”低功率低相位雜訊CMOS互補式LC諧振阜壓控震盪器之研究與分析”, 國立雲林科技大學電子工程研究所碩士論文,民國九十四年
[8] Andreani P., Mattisson S., “ On the use of MOS varactors in RF VCOs.”; IEEE Journal of Solid-State Circuits, Volume 35, June 2000
[9] S. A. Wartenberg and J. R. Hauser, “Substrate Voltage and Accumulation-Mode MOS Varactor Capacitance,” IEEE Transcations on Electron Device, Vol. 52, No. 7, July 2005.
[10] D. K. Cheng, Field and Wave Electromanetics, Addison-Wesley Publishing Company, 1989
[11] Jan Craninckx, and M. S. J. Steyaert, “A 1.8-GHz Low-Phase-Noise CMOS VCO Using Optimized Hollow Spiral Inductors, “IEEE Journal of Solid-State Circuits, Vol. 32, No. 5, May 1997
[12] D. K. Cheng, Fundamentals of Engineering Electromagnetics, Addison- Wesley Publishing Company, 1993
[13] Thomas H. Lee, The Design of CMOS Ratio-Frequency Integrated Circuits, Second Edition 2004.
[14] H. M. Greenhouse, “Design of Planar Rectangular Microelectronic Inductors,” IEEE Tran. Parts, Hybrids, and Packaging, v. 10, no.2, Jane 1974, pp.101-9
[15] H. A. Wheeler, “Simple Inductance Formulas for Radio Coils,” Proc. IRE, v. 16 no. 10, October 1928, pp. 1398-1400
[16] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 743–752, May 1998.
[17] Doan, C.H.; Emami, S.; Sobel, D.A.; Niknejad, A.M.; Brodersen, R.W, “Design Considerations for 60 GHz CMOS Radios, “ Communications Magazine, IEEE Volume 42, Issue 12, Dec. 2004 Page(s):132 – 140
[18] Tang-Nian Luo; Shuen-Yin Bai; Yi-Jan Emery Chen; Hsin-Shu Chen; Deukhyoun Heo, “A 1-V CMOS VCO for 60-GHz applications “ Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, Volume1, 4-7 Dec. 2005 Page(s):4 pp.
[19] T. C. Edwards; M. B. Steer, Foundations of Interconnect and Microstrip Design, Addison-Wesley Publishing Company, 2000
[20] Robert E. Collin, Foundations for Microwave Engineering, McGRAW-Hill, 1992
[21] Halliday. Resnick.Walker, Fundamentals of Physics Extended, 7th John Wiley and Sons, INC. 1993
[22] 盧春林;王瑞祿, “射頻電路與RFIC基礎” , 教育部顧問室94年度通訊科技人培育先導型計畫,培訓課程講義 民國94年
[23] Eric C.M. Tsai, “Microwave Engineering” , NCKU Fall 2006
[24] B. Razavi, RF Microelectronics, Prentics-Hall. INC, 1998
[25] van der Tang, J.D. Kasperkovitz, D. van Roermund A. , “A 9.8-11.5-GHz quadrature ring oscillator for optical receivers “, IEEE JSSC , March,2002
[26] Eken Y.A., Uyemura J.P., “A 5.9-GHz voltage-controlled ring oscillator in 0.18um CMOS” , IEEE J.Silid-State Circuits, Vol.39. pp.230-233, Jan. 2004
[27] Hajimiri A., Limotyrakis S., Lee T.H., ” Phase noise in multi-gigahertz CMOS ring oscillators”, Custom Integrated Circuits Conference, pp.49-52, May. 1998
[28] Jenn-Tzer Yang, “The study of Radio Frequency CMOS Active Inductors and Applications “ ,Ph.D Thesis, NCTU, 2004
[29] Pascht. A., Fischer J., Berroth M., “A CMOS low noise amplifier at 2.4 GHz with active inductor load,” Silicon Monolithic Integrated Circuits in RF Systems, 2001. Digest of Papers. Page(s):1 – 5
[30] S.Hara, T. Tokumitsu, T. TanaKa. and M. Aikawa,”Broad-Band Monolithic Microwave Active Inductors and Its Application to Miniaturized Wide-Band Amplifier,” IEEE Transaction on Microwave Theory and Techniques, Vol. 36, No. 12 pp. 1920-1924, Dec. 1988.
[31] S. Hara, T. Tokumitsu, and M. Aikawa, “Lossless Broad-Band Monolithic Microwaves Active Inductor,” IEEE Transaction on Microwave Theory and Techniques, Vol. 37, No. 12 pp. 1979-1983, Dec. 1989.
[32] S. Lucyszyn and I. D. Robertson, “Monolithic Narrow-Band Fiter Using Ultrahigh-Q Tunable Active Inductor,” IEEE Transaction on Microwave Theory and Techniques, Vol. 42, No. 12 pp. 2617-2622, Dec. 1994.
[33] H. Hayashi, M. Muraguchi, Y. Umeda, and T. Enoki, “A High-Q Broad-Band Active Inductor and Its Application to a Low-Loss Analog Phase Shifter,” IEEE Transaction on Microwave Theory and Techniques, Vol. 44, No. 12 pp. 2369-2374, Dec. 1996.
[34] U. Yoaprasit and J. Ngarmnil, “Q-Enhancement technique for RF CMOS active inductor,” Proc. IEEE ISCAS, Vol. 5, pp. 592-598, 2000.
[35] H.Wang, “A 50GHz VCO in 0.25um CMOS,” IEEE Int. Solid-State Circuits Conf.(ISSCC) Dig. Tech. Papers, Feb.2001, pp.372-373
[36] M. Tiebout, H.-D. Wohlmuth, W. Simbuger, “A 1V 51GHz fully-integrated VCO in 0.12um CMOS,” IEEE Int. Solid-State Circuits Conf.(ISSCC) Dig. Tech. Papers, Feb. 2002, pp.300-301
[37] A. P. van der Wel, S. L. J. Gierkink, R. C. Frye, V. Boccuzzi, and B. Nauta, “A robust 43GHz VCO in CMOS for OC-768 SONET applications, “ IEEE J. Solid-State Circuits, vol.39, no.7, pp.1159-1163, July 2004.
[38] L. M. Franca-Neto, R. E. Bishop, and B. A. Bloechel, “ 64GHz and 100GHz VCOs in 90nm CMOS using optimum pumping method,” IEEE Int. Solid-State Circuits Conf.(ISSCC) Feb. 2004, pp444-445.
[39] H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, “ Millimeter-Wave CMOS circuit design,” IEEE Trans. Microw. Theory Tech., vol.53, no.2, pp.472-477, Feb.2005
[40] Z. Li and Kenneth O., “ A 900MHz 1.5V CMOS voltage controlled oscillator using switched resonators with a wide tuning range,” IEEE Micro.Wireless Compon Lett., vol. 13, no.4, pp. 137-139, April 2003
[41] A.D. Berny, A. M. Niknjad, and R. G. Meyer, “A 1.8GHz LC VCO with 1.3GHz tuning range and digital amplitude calibration,” IEEE J. Solid-State Circuits, vol.40, no.4, pp.909-917,April 2005
[42] Shun-Hao Chang, Tzuen-Hsi Huang, and Tzu-Yi Yang, “Integration of VCO in DTV tuners with switchable differential inductor,”in Proc. of 17th VLSI Design / CAD Symposium, Hualien, Taiwan, pp.141-144, Agu.8-11, 2006.
[43] Jun-Chau Chien, “Circuit Designs for 40-Gb/s High-Speed Communication Systems”, Master Thesis, NTUEE,2005
[44] H. Wu and A. Hajimiri, “Silicon-Based Distributed Voltage Controlled Oscillators,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 493-502, March 2001
[45] Kleveland B., Diaz C.H., Vook D., Madden L., Lee T.H., Wong S.S., “Exploiting CMOS reverse interconnect scaling in multigigahertz amplifier and oscillator design,”Solid-State Circuits, IEEE Journal of Volume 36, Issue 10, Oct. 2001 Page(s):1480 – 1488
[46] Eun-Chul Park, Euisik Yoon, “A 13GHz CMOS distributed oscillator using MEMS coupled transmission lines for low phase noise” Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE International 15-19 Feb. 2004 Page(s):300 - 530 Vol.1
[47] Wood J., Edwards T.C., Lipa S., “Rotary traveling-wave oscillator arrays: a new clock technology” Solid-State Circuits, IEEE Journal of Volume 36, Issue 11, Nov. 2001 Page(s):1654 – 1665
[48] Yu Zhengtao, Liu Xun, “Design of Rotary Clock Based Circuits,” Design Automation Conference, 2007. DAC '07. 44th ACM/IEEE 4-8 June 2007 Page(s):43 – 48
[49] Yu Z., Liu X., “Low-Power Rotary Clock Array Design,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on Volume 15, Issue 1, Jan. 2007 Page(s):5 – 12
[50] Zhengtao Yu, Xun Liu, “Power analysis of rotary clock,” VLSI, 2005. Proceedings. IEEE Computer Society Annual Symposium on 11-12 May 2005 Page(s):150 – 155
[51] Jri Lee and Behzad Razavi, "A 40-Gb/s Clock and Data Recovery Circuit in 0.18-mm CMOS Technology," Digest of International Solid-State Circuits Conference, pp. 242-243, Feb. 2003.
[52] Le Grand de Mercey, G., “A 18GHz rotary traveling wave VCO in CMOS with I/Q outputs, “ Solid-State Circuits Conference, 2003. ESSCIRC '03. Proceedings of the 29th European16-18 Sept. 2003 Page(s):489 – 492
[53] O'Mahony F., Yue C.P., Horowitz M.A., Wong S.S. “A 10-GHz global clock distribution using coupled standing-wave oscillators,” Solid-State Circuits, IEEE Journal of Volume 38, Issue 11, Nov. 2003 Page(s):1813 – 1820
[54] Ham D., Andress W., “A circular standing wave oscillator,” Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE International
15-19 Feb. 2004 Page(s):380 - 533 Vol.1
[55] Andress W.F., Ham D., “Standing wave oscillators utilizing wave-adaptive tapered transmission lines,” Solid-State Circuits, IEEE Journal ofVolume 40, Issue 3, Mar 2005 Page(s):638 – 651
[56] Andress W., Ham D., “Recent developments in standing-wave oscillator design: review,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers. 2004 IEEE 6-8 June 2004 Page(s):119 – 122
[57] Meigen Shen, Li-Rong Zheng, Tenhunen H., Tjukanoff E., Isoaho J., “Case study of interconnect analysis for standing wave oscillator design,” Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26 May 2005 Page(s):456 - 459 Vol. 1
[58] Daquan Huang, Hant W., Ning-Yi Wang, Ku T.W., Qun Gu, Wong R., Chang M.-C.F., “A 60GHz CMOS VCO Using On-Chip Resonator with Embedded Artificial Dielectric for Size, Loss and Noise Reduction,” Solid-State Circuits, 2006 IEEE International Conference Digest of Technical Papers Feb. 6-9, 2006 Page(s):1218 – 1227
[59] Tang-Nian Luo, Shuen-Yin Bai, Yi-Jan Emery Chen, Hsin-Shu Chen, Deukhyoun Heo, “A 1-V CMOS VCO for 60-GHz applications, “ Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings Volume 1, 4-7 Dec. 2005 Page(s):4 pp.
[60] Jun-Chau Chien, Liang-Hung Lu, “A 40-GHz Wide-Tuning-Range VCO in 0.18-~m CMOS, “ VLSI Circuits, 2006. Digest of Technical Papers. 2006 Symposium on 2006 Page(s):178 – 179
[61] Razavi B., “A 60GHz direct-conversion CMOS receiver,”
Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International 6-10 Feb. 2005 Page(s):400 - 606 Vol. 1
[62] Razavi B., “ A 60-GHz CMOS receiver front-end, “ Solid-State Circuits, IEEE Journal of Volume 41, Issue 1, Jan. 2006 Page(s):17 – 22
[63] Jun-Chau Chien, Liang-Hung Lu, “A 40-GHz Wide-Tuning-Range VCO in 0.18-um CMOS, ” VLSI Circuits, 2006. Digest of Technical Papers. 2006 Symposium on 2006 Page(s):178 – 179