| 研究生: |
徐伸泳 Hsu, Shen-Yung |
|---|---|
| 論文名稱: |
雙隔膜配置引起的震波管的震波衰減 Double Diaphragm Induced Shock Attenuation in Shock Tubes |
| 指導教授: |
黃捷楷
Gaetano Currao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 震波管 、震波 、震波衰減 、隔膜 、計算流體力學 |
| 外文關鍵詞: | Shock tube, shock wave, shock attenuation, diaphragm, CFD |
| 相關次數: | 點閱:200 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究為一震波管中的氣體動力學影響的研究,主要聚焦於震波衰減的現象。對使用雙隔膜配置的成功大學震波管中存在的震波衰減現象進行了研究。研究旨在了解雙隔膜機制對震波衰減的影響,並評估不同原因造成的震波衰減的程度與其物理機制。使用商用軟體Ansys Fluent求解了二維與三維Navier-Stoke多物種方程式並獲得了數值解。分別對無黏性流動、黏性流動、雙隔膜模式的黏性流動與帶有有顯隔膜開啟時間的雙隔膜模式的震波管流動進行分析。結果顯示隨著隔膜面積減少,震波馬赫數與介面馬赫數隨之降低。同時隨著隔膜開啟時間的增加,震波馬赫數也有減少的趨勢。記錄了經過膈膜的質量流率,結果顯示質量流率與面積比呈線性關係。且隨著面積比下降,介面後氣體產生了降壓的現象。根據研究結果,對於面積比誘導震波衰減的原因可解釋為驅動氣體的膨脹。
發展了一種相對簡易的用於測量隔膜開啟時間的方法,結果顯示第二隔膜的開啟時間約於0.5毫秒至1毫秒。最後,解釋了雙隔膜模式導致震波衰減的原因是由於更小的開口面積所致。
This is a numerical and experimental study of shock tubes internal dynamics, with special emphasis on the phenomenon of shock speed reduction, often referred to as shock attenuation. This phenomenon was observed in the National Cheng Kung University (NCKU) shock tube, thus this work aims at isolating the main causes behind shock attenuation. The tube employs a series of two diaphragms to tune the pressure ratio and separate the driver from the driven tube. The objective is thus to understand the influence of area reduction induced by the diaphragms, presence of two diaphragms, friction, shape of the diaphragms on shock attenuation. The commercial software Ansys Fluent had been employed to solve the two-dimensional and three-dimensional Navier-Stokes multispecies equations to obtain numerical solutions. The simulations were conducted with increasing complexity, thus from an inviscid ideal shock tube the most advanced simulation also included viscous effects, diaphragm shape and gradual diaphragm opening.
Experimental data comprise of pressure data and derived averaged shock speed data. Through the pressure measurements it was possible to measure the second diaphragm opening time to be approximately one millisecond. Results show that a decrease in diaphragm opening area results in a reduction of shock and contact discontinuity speed; A smaller opening results in a more gradual pressure rise thus a weaker shock. A larger opening time also promoted shock attenuation.
[1] Chen, J. Y.,. “Reflected Shock Tunnel Calibration”. National Cheng Kung University Master thesis, Taiwan, 2010
[2] Jang, Y. J., “Observation of Supersonic Airflow over Backward Facing Step with Hydrogen Injection”. National Cheng Kung University Master thesis, Taiwan, 2010.
[3] Emrich, R. J., Curtis, C. W., “Attenuation on the Shock Tube”, Journal of Applied Physics, Vol. 24, No. 3, pp 360-363.
[4] Trimpi, R. L., Cohen, N. B., “A theory for predicting the flow of real gases in shock tube with experimental verification”, NASA TN 3375, 1955.
[5] Mirels, H., “Attenuation in a shock tube due to unsteady boundary layer action.”, NASA TN 3278, 1956.
[6] Spence, D. A., Woods, B. A., “A review of theoretical treatment of shock tube attenuation.”, J. Fluid Mech. Vol. 19, No. 2, 1963, pp 161-174.
[7] Duff, R. E., “Shock Tube Performance at Low Initial Pressure.”, Phys. Fluids, Vol. 2, No. 2, 1959, pp. 207-216.
[8] Matthew, S., Matthew, M,. Luca, D. M., “Analytical Method of Evaluating Nonuniformities in Shock Tube Flows: Theory and Development.”, AIAA Journal,Vol. 60, No. 2, 2022, pp. 654-668.
[9] White, R. D. “Influence of diaphragm opening time on shock tube flows.”, J. Fluid Mech, Vol. 4, No. 6, 1958, pp 585-599.
[10] Кирее, В. Т., “О движении ударной волны при немгновенном раскрытии диафрагмы в ударной трубе.”, Изв. АН СССР, ОТН, No. 6, 1962, pp 144.
[11] Штеменко, Л. С., “Течение Газа Вблизи Диафрагмы в ударной трубе”,Вестник Московского университета, No. 1, 1967, pp 53-64.
[12] Simpson, C. J. S. M. et. al., “Effect on Shock Trajectory of the Opening Time of Diaphragms in a Shock Tube”, Phys. Fluids, Vol. 10, No. 9, 1967, pp 1894-1896.
[13] Pakdaman, S. A., Garcia, M., Teh,. E., Lincoln, D., Trivedi, M., Alves, M., Johansen, C., “Diaphragm opening effects on shock wave formation and acceleration in a rectangular cross section channel”, Shock waves, Vol. 26, 2016, pp 799-813.
[14] Ikui, T., Matsuo, K., “Investigations of the Aerodynamic Characteristics of the Shock Tubes (Part 1 The Effect of Tube Diameter on the Tube Performance)”,Bulletin of JSME, Vol. 12, No. 52, 1969, pp 774-782
[15] Wataru Kaneko, Kazuhiro Ishii, “Effects of diaphragm rupturing conditions on self-ignition of high-pressure hydrogen”, IJHE, Vol. 41, No. 25, 2016, pp 10969-10975.
[16] Wataru Kaneko, Junnosuke Yoshihara, Kazuhiro Ishii, “Effects of opening process of diaphragm on shock strength in a circular tube”, Bulletin of JSME, Vol. 28, No. 835, 2016.
[17] Houas, L., Biamino, L., Mariani, C., Igra, O., Jourdan, G., Massol, A., “The effects that changes in the diaphragm aperture have on the resulting shock tube flow”,Shock Waves, Vol. 22, 2012, pp 287-293.
[18] Gaetani, P., Guardone, A., Persico, G., “Shock tube flows past partially opened diaphragm”, J. Fluid Mech, Vol. 602, 2008, pp267-286.
[19] Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence for Engineering Applications”, AIAA, Vol. 32, No. 8, 1994, pp 1598-1605.
[20] Toro. F. E., “Riemann Solvers and Numerical Methods for Fluid Dynamics (3rd ed)”, Springer, 2009.
[21] F. Moukalled., L. Mangani., M. Darwish., “The Finite Volume Method in Computational Fluid Dynamics(Vol. 113, 1st ed.)”, Spinger, 2015.
[22] Joseph Hilsenrath, et. al., “Tables of Thermal Properties of Gases”, Natl. Bru. Stand. (U.S) Circ, 564, 1954.