簡易檢索 / 詳目顯示

研究生: 陳慧碧
Chen, Huei-Bi
論文名稱: 應用機率物質流分析方法模擬PVC微塑膠在台灣環境之釋出
Modeling the Environmental Release of PVC Microplastics in Taiwan using Probabilistic Material Flow Analysis
指導教授: 侯文哲
Whou, Wen-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 118
中文關鍵詞: 機率物質流分析PVC微塑膠環境釋放
外文關鍵詞: Probabilistic Material Flow Analysis, PVC, Microplastics, Environmental Release
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 塑膠在當今社會已經成為我們生活中不可或缺的聚合材料,其中以六大泛用塑膠被廣泛應用於工業、農業及民生用品中,台灣為PVC主要出產國之一,在2017年的產量約為1,600千噸,為六大類常用塑膠中產量最多的塑膠。而許多研究指出微塑膠會在PVC塑膠產品的各個生命週期階段被釋放到環境中,這可能對環境生物和人類健康造成一定的影響。為了提升微塑膠的風險評估及管理,對於微塑膠在生命週期釋放的全面性分析已是刻不容緩。本研究主要目的為利用概率材料流分析方法,基於完善台灣PVC物質流分析並來量化PVC微塑料在不同環境介質 (例如空氣,土壤,淡水和海洋) 中的釋放和分布。
    研究結果顯示,在PVC生命週期分析中,約1,461 ± 83千噸的PVC塑膠會在被生產和製造後出口,國內僅消耗約168 ± 18 kt PVC,主要集中在建築,約88 ± 9 千噸,其次為其他類產品 (例如傢俱、家用塑膠及織物塗佈),以及包裝和容器類,進口到台灣的PVC廢塑膠約為24±4 千噸,大部分廢塑膠會以再利用和焚燒的形式處理。而在環境釋放分析中,PVC微塑料在環境中的總釋放量為1.4 ± 0.4 千噸,其中大部分來自PVC原料生產(0.80 ± 0.07千噸)和產品製造(0.20 ± 0.02千噸),其中以釋放到空氣中的量最大,約為851 ± 279頓,但 PVC 微塑料傾向沉積於土壤和水域環境裡,不會一直懸浮在空氣中,本研究釋放模擬的最終環境為土壤及海洋,微塑膠釋放到各別環境的量為797 ± 215噸和555 ± 163噸。上述結果均表明,PVC塑膠的原料生產及製造業是台灣微塑膠釋放最主要的來源,因此可以藉由對源頭汙染排放的管理來降低國內暴露於PVC微塑膠的風險。

    Plastics are an indispensable polymeric material in our society. Among them, six commodity plastics are widely used in the industrial, agricultural, and consumer product sectors. Taiwan is one of the main producers of PVC plastic worldwide, with the largest annual output at ~1,600 kt in 2017 among the six commodity plastics. Microplastics (MPs) will inevitably release into the ecosystem during the life cycle stages of PVC products, which may pose certain impacts on environmental organisms and human health. To aid in the risk assessment and management of MPs that currently have limited data, a comprehensive evaluation of the life-cycle releases is urgently needed. This study aims to quantify the release of PVC MPs into different environmental media such as air, soil, freshwater, and ocean in Taiwan by using the probabilistic material flow analysis (PMFA) based on an analysis of the PVC life cycle including production, manufacturing, trade, usage, and end-of-life disposal in the year of 2017.
    The results show that 1,461 ± 83 kt of PVC plastic as raw material and products was exported with only 168 ± 18 kt consumed domestically in the construction at 88 ± 9 kt as the largest followed by other products (e.g., furniture, household plastics, and fabric coating), as well as packing and containers. The 24 ± 4 kt of PVC wastes were imported to Taiwan and were mostly recycled and incinerated. The modeled total release of PVC as MPs to the environment is 1.4 ± 0.4 kt, mainly from raw PVC production (0.80 ± 0.07 kt) and product manufacturing (0.20 ± 0.02 kt). The release to the air is the greatest at 851 ± 279 t, but MPs unlikely stay airborne and tend to deposit onto soil and water. The modeled releases to the ultimate environmental compartments are 797 ± 215 t in soil and 555 ± 163 t in ocean. The above results suggest the plastics production and manufacturing industries as the major source MPs in Taiwan, on which the source reduction effort could be focused.

    摘要 I ABSTRACT II 誌謝 IV CONTENT V LIST OF TABLES VII LIST OF FIGURES IX ABBREVIATIONS XI Chapter 1 INTRODUCTION 1 1.1. Background and Motivation 1 1.2. Objective 3 Chapter 2 LITERATURE REVIEW 4 2.1. Overview of the Global Production, Application, and Environmental Impacts of Plastics 4 2.1.1. Global and Regional Plastic Production 4 2.1.2. Plastics Type and Application 5 2.1.3. Plastic Wastes 7 2.2. Environmental Release of MPs 8 2.2.1. Definition of Plastic Particles 8 2.2.2. The Sources of MPs 9 2.2.3. Environmental Fate and Distribution 10 2.3. Modeling Environmental Release and Fate of MPs 13 2.3.1. Development of Environmental Exposure Modeling of MPs 13 2.3.2. Material Flow Analysis 17 2.3.3. Probabilistic Material Flow Analysis 19 2.4. PVC Introduction 24 2.4.1. Basic Characteristics 24 2.4.2. Industry Status in Taiwan 24 2.4.3. Application 25 2.4.4. Hazards 26 Chapter 3 RESEARCH METHODS 27 3.1. Research Framework 27 3.2. PMFA Methodology 28 3.2.1. Workflow of PMFA development 28 3.2.2. Matrix Equation of Model Structure 30 3.2.3. Uncertainty Contribution 32 3.2.4. Probability Distributions Creation 34 3.2.5. Reproducibility Test 36 3.3. Model Structure and System Boundary 38 3.3.1. The Workflow of Establishing the Model Structure 38 3.3.2. Whole Material Flow Structure 39 3.3.3. Life-cycle Flow Structure of PVC 41 3.3.4. Environmental Release Flow Structure 50 3.4. Data Collection and Processing 54 3.4.1. Input and Trade 54 3.4.2. Transfer Coefficients (TCs) 57 3.5. Relative Uncertainty Analysis 67 3.6. Predicted Environmental Concentration 68 Chapter 4 RESULTS AND DISCUSSION 69 4.1. Material Flow Analysis of PVC Plastics and MPs 69 4.2. Life-cycle Material Flows of PVC Plastics 71 4.3. Environmental Release Flows of PVC MPs 75 4.4. Predicted Environmental Concentrations and Distribution of PVC MPs 82 Chapter 5 CONCLUSIONS AND RECOMMENDATIONS 84 5.1. Conclusions 84 5.2. Recommendations 86 REFERENCES 87 Appendix 98

    (1) Geyer, R.; Jambeck, J. R.; Law, K. L.Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3 (7), 25–29. https://doi.org/10.1126/sciadv.1700782.
    (2) Alimi, O. S.; Farner Budarz, J.; Hernandez, L. M.; Tufenkji, N.Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52 (4), 1704–1724. https://doi.org/10.1021/acs.est.7b05559.
    (3) Dey, T. K.; Uddin, M. E.; Jamal, M.Detection and Removal of Microplastics in Wastewater: Evolution and Impact. Environ. Sci. Pollut. Res. 2021 2814 2021, 28 (14), 16925–16947. https://doi.org/10.1007/S11356-021-12943-5.
    (4) Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M. B.; Trachsel, J.; Gerdts, G.White and Wonderful? Microplastics Prevail in Snow from the Alps to the Arctic. Sci. Adv. 2019, 5 (8), eaax1157. https://doi.org/10.1126/sciadv.aax1157.
    (5) Waldschläger, K.; Lechthaler, S.; Stauch, G.; Schüttrumpf, H.The Way of Microplastic through the Environment – Application of the Source-Pathway-Receptor Model (Review). Sci. Total Environ. 2020, 713, 136584. https://doi.org/10.1016/j.scitotenv.2020.136584.
    (6) Kawecki, D.; Nowack, B.Polymer-Specific Modeling of the Environmental Emissions of Seven Commodity Plastics As Macro- and Microplastics. Environ. Sci. Technol. 2019, 53 (16), 9664–9676. https://doi.org/10.1021/acs.est.9b02900.
    (7) Engler, R. E.The Complex Interaction between Marine Debris and Toxic Chemicals in the Ocean. Environ. Sci. Technol. 2012, 46, 302–315.
    (8) Rodrigues, J. P.; Duarte, A. C.; Santos-Echeandía, J.; Rocha-Santos, T.Significance of Interactions between Microplastics and POPs in the Marine Environment: A Critical Overview. TrAC - Trends Anal. Chem. 2019, 111, 252–260. https://doi.org/10.1016/j.trac.2018.11.038.
    (9) Zhang, Q.; Xu, E. G.; Li, J.; Chen, Q.; Ma, L.; Zeng, E. Y.; Shi, H.A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environmental Science and Technology. American Chemical Society April 7, 2020, pp 3740–3751. https://doi.org/10.1021/acs.est.9b04535.
    (10) Mistri, M.; Infantini, V.; Scoponi, M.; Granata, T.; Moruzzi, L.; Massara, F.; DeDonati, M.; Munari, C.Small Plastic Debris in Sediments from the Central Adriatic Sea: Types, Occurrence and Distribution. Mar. Pollut. Bull. 2017, 124 (1), 435–440. https://doi.org/10.1016/j.marpolbul.2017.07.063.
    (11) Ruiz-Orejón, L. F.; Mourre, B.; Sardá, R.; Tintoré, J.; Ramis-Pujol, J.Quarterly Variability of Floating Plastic Debris in the Marine Protected Area of the Menorca Channel (Spain). Environ. Pollut. 2019, 252, 1742–1754. https://doi.org/10.1016/j.envpol.2019.06.063.
    (12) Lebreton, L. C. M.; Van DerZwet, J.; Damsteeg, J. W.; Slat, B.; Andrady, A.; Reisser, J.River Plastic Emissions to the World’s Oceans. Nat. Commun. 2017, 8, 1–10. https://doi.org/10.1038/ncomms15611.
    (13) Xu, B.; Liu, F.; Cryder, Z.; Huang, D.; Lu, Z.; He, Y.; Wang, H.; Lu, Z.; Brookes, P. C.; Tang, C.; Gan, J.; Xu, J.Microplastics in the Soil Environment: Occurrence, Risks, Interactions and Fate–A Review. Crit. Rev. Environ. Sci. Technol. 2020, 50 (21), 2175–2222. https://doi.org/10.1080/10643389.2019.1694822.
    (14) Prata, J. C.; Castro, J. L.; daCosta, J. P.; Duarte, A. C.; Rocha-Santos, T.; Cerqueira, M.The Importance of Contamination Control in Airborne Fibers and Microplastic Sampling: Experiences from Indoor and Outdoor Air Sampling in Aveiro, Portugal. Mar. Pollut. Bull. 2020, 159, 111522. https://doi.org/10.1016/j.marpolbul.2020.111522.
    (15) Bianco, A.; Passananti, M.Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem. Sustainability (Switzerland). MDPI AG September 1, 2020. https://doi.org/10.3390/SU12187327.
    (16) Koutnik, V. S.; Leonard, J.; Alkidim, S.; DePrima, F. J.; Ravi, S.; Hoek, E. M. V.; Mohanty, S. K.Distribution of Microplastics in Soil and Freshwater Environments: Global Analysis and Framework for Transport Modeling. Environmental Pollution. Elsevier Ltd April 1, 2021, p 116552. https://doi.org/10.1016/j.envpol.2021.116552.
    (17) Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S.; Stohl, A.Atmospheric Transport Is a Major Pathway of Microplastics to Remote Regions. Nat. Commun. 2020, 11 (1). https://doi.org/10.1038/s41467-020-17201-9.
    (18) Daily, J.; Hoffman, M. J.Modeling the Three-Dimensional Transport and Distribution of Multiple Microplastic Polymer Types in Lake Erie. Mar. Pollut. Bull. 2020, 154, 111024. https://doi.org/10.1016/j.marpolbul.2020.111024.
    (19) 王恬心.不確定性分析應用於物質流分析與管理研究, 國立臺灣大學, 2017.
    (20) 陳必晟.以物質流分析強化經濟系統活動之風險評估與管理, 國立臺灣大學, 2014.
    (21) 馬鴻文; 鄒倫.永續資源管理技術手冊; 2013.
    (22) Nakamura, S.; Nakajima, K.; Yoshizawa, Y.; Matsubae-Yokoyama, K.; Nagasaka, T.Analyzing Polyvinyl Chloride in Japan with The Waste Input-Output Material Flow Analysis Model. J. Ind. Ecol. 2009, 13 (5), 706–717. https://doi.org/10.1111/j.1530-9290.2009.00153.x.
    (23) Liu, Y.; Zhou, C.; Li, F.; Liu, H.; Yang, J.Stocks and Flows of Polyvinyl Chloride (PVC) in China: 1980-2050. Resour. Conserv. Recycl. 2020, 154 (November 2019). https://doi.org/10.1016/j.resconrec.2019.104584.
    (24) Ciacci, L.; Passarini, F.; Vassura, I.The European PVC Cycle: In-Use Stock and Flows. Resour. Conserv. Recycl. 2017, 123, 108–116. https://doi.org/10.1016/j.resconrec.2016.08.008.
    (25) 林鼎傑.應用空間特殊性生命週期評估於台灣PVC供應鏈之環境衝擊與環境債分析, 國立臺灣大學, 2010.
    (26) PlasticEurope.Plastics-the Facts 2020: An Analysis of European Plastics Production, Demand and Waste Data; 2020.
    (27) Chlorine & Building Materials Project: Phase 2 Asia Including Worldwide Findings | Healthy Building Network https://healthybuilding.net/reports/20-chlorine-building-materials-project-phase-2-asia-including-worldwide-findings?fbclid=IwAR30aWEiDdokhGX32aL8SUAQOuJqcrEX8OmPdT9c8xqV_DEDvwqNnAojHOI (accessed Jul 9, 2021).
    (28) Microplastics in soils: Analytical methods, pollution characteristics and ecological risks | Sustainable Development Goals - Resource Centre https://sdgresources.relx.com/research-articles/microplastics-soils-analytical-methods-pollution-characteristics-and-ecological (accessed Jun 2, 2021).
    (29) Wright, S. L.; Ulke, J.; Font, A.; Chan, K. L. A.; Kelly, F. J.Atmospheric Microplastic Deposition in an Urban Environment and an Evaluation of Transport. Environ. Int. 2020, 136 (September 2019), 105411. https://doi.org/10.1016/j.envint.2019.105411.
    (30) Isobe, A.; Uchiyama-Matsumoto, K.; Uchida, K.; Tokai, T.Microplastics in the Southern Ocean. Mar. Pollut. Bull. 2017, 114 (1), 623–626. https://doi.org/10.1016/j.marpolbul.2016.09.037.
    (31) Xia, X.; Sun, M.; Zhou, M.; Chang, Z.; Li, L.Polyvinyl Chloride Microplastics Induce Growth Inhibition and Oxidative Stress in Cprinus Carpio Var. Larvaey. Sci. Total Environ. 2020, 716, 136479. https://doi.org/10.1016/j.scitotenv.2019.136479.
    (32) Wu, P.; Tang, Y.; Jin, H.; Song, Y.; Liu, Y.; Cai, Z.Consequential Fate of Bisphenol-Attached PVC Microplastics in Water and Simulated Intestinal Fluids. Environ. Sci. Ecotechnology 2020, 2, 100027. https://doi.org/10.1016/j.ese.2020.100027.
    (33) Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J.Microplastics as Vector for Heavy Metal Contamination from the Marine Environment. Estuar. Coast. Shelf Sci. 2016, 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003.
    (34) Wu, P.; Cai, Z.; Jin, H.; Tang, Y.Adsorption Mechanisms of Five Bisphenol Analogues on PVC Microplastics. Sci. Total Environ. 2019, 650, 671–678. https://doi.org/10.1016/j.scitotenv.2018.09.049.
    (35) Bao, Z. Z.; Chen, Z. F.; Zhong, Y.; Wang, G.; Qi, Z.; Cai, Z.Adsorption of Phenanthrene and Its Monohydroxy Derivatives on Polyvinyl Chloride Microplastics in Aqueous Solution: Model Fitting and Mechanism Analysis. Sci. Total Environ. 2021, 764, 142889. https://doi.org/10.1016/j.scitotenv.2020.142889.
    (36) 楊喜男、黃壬瑰、陳怡如、李世偉、許令宜、羅仕麟、林榆翔.國內自來水、海水、沙灘砂礫與貝類中微型塑膠之現況調查; 2018.
    (37) Taiwan Chemical Industry Faces Uncertain Future - Taiwan Business TOPICS https://topics.amcham.com.tw/2019/09/taiwan-chemical-industry-faces-uncertain-future/ (accessed Jul 9, 2021).
    (38) 經濟部統計處,工業產品群統計調查 https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx.
    (39) Heller, M. C.; Mazor, M. H.; Keoleian, G. A.Plastics in the US: Toward a Material Flow Characterization of Production, Markets and End of Life. Environ. Res. Lett. 2020, 15 (9). https://doi.org/10.1088/1748-9326/ab9e1e.
    (40) Jiang, X.; Wang, T.; Jiang, M.; Xu, M.; Yu, Y.; Guo, B.; Chen, D.; Hu, S.; Jiang, J.; Zhang, Y.; Zhu, B.Assessment of Plastic Stocks and Flows in China: 1978-2017. Resour. Conserv. Recycl. 2020, 161 (June). https://doi.org/10.1016/j.resconrec.2020.104969.
    (41) PWMI, P. W. M. I.-.Plastic Products, Plastic Waste and Resource Recovery [2018]. PWMII Newsl. 2020, 49 (2), 10.
    (42) PWMI, P. W. M. I.-.An Introduction to Plastic Recycling. Plast. Waste Manag. Inst. 2019, 1–33.
    (43) 李育明.子計畫四: 民生用塑膠及金屬容器之物質流分析與資源生產力指標評估探討(I); 2006.
    (44) 首頁 | 財團法人塑膠工業技術發展中心 https://www.pidc.org.tw/ (accessed Jul 10, 2021).
    (45) Hassanpour, M.; Unnisa, S. A.Plastics; Applications, Materials, Processing and Techniques. Plast. Surg. Mod. Tech. 2017, 2 (1). https://doi.org/10.29011/2577-1701.100009.
    (46) Andrady, A. L.; Neal, M. A.Applications and Societal Benefits of Plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364 (1526), 1977–1984. https://doi.org/10.1098/rstb.2008.0304.
    (47) Borrelle, S. B.; Ringma, J.; Law, K. L.; Monnahan, C. C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G. H.; Hilleary, M. A.; Eriksen, M.; Possingham, H. P.; Frond, H. D.; Gerber, L. R.; Polidoro, B.; Tahir, A.; Bernard, M.; Mallos, N.;, C. M.Predicted Growth in Plastic Waste Exceeds Efforts to Mitigate Plastic Pollution. Science (80-. ). 2020, 1518 (September), 1515–1518.
    (48) Sheavly, S. B.; Register, K. M.Marine Debris & Plastics: Environmental Concerns, Sources, Impacts and Solutions. J. Polym. Environ. 2007, 15 (4), 301–305. https://doi.org/10.1007/s10924-007-0074-3.
    (49) daCosta, J. P.; Santos, P. S. M.; Duarte, A. C.; Rocha-Santos, T.(Nano)Plastics in the Environment - Sources, Fates and Effects. Sci. Total Environ. 2016, 566–567, 15–26. https://doi.org/10.1016/j.scitotenv.2016.05.041.
    (50) Lee, J.; Lee, J. S.; Jang, Y. C.; Hong, S. Y.; Shim, W. J.; Song, Y. K.; Hong, S. H.; Jang, M.; Han, G. M.; Kang, D.; Hong, S.Distribution and Size Relationships of Plastic Marine Debris on Beaches in South Korea. Arch. Environ. Contam. Toxicol. 2015, 69 (3), 288–298. https://doi.org/10.1007/s00244-015-0208-x.
    (51) Rochman, C. M.; Kross, S. M.; Armstrong, J. B.; Bogan, M. T.; Darling, E. S.; Green, S. J.; Smyth, A. R.; Veríssimo, D.Scientific Evidence Supports a Ban on Microbeads. Environ. Sci. Technol. 2015, 49 (18), 10759–10761. https://doi.org/10.1021/ACS.EST.5B03909.
    (52) Alexandra Sifferlin.Microbeads: Illinois Bans Plastics In Face Wash That Are Bad For Fish | Time https://time.com/2917462/why-illinois-banned-microbeads/ (accessed Jun 2, 2021).
    (53) Steinmetz, K.Microbeads: Why Your Face Wash Might Be Bad For Fish | Time https://time.com/74956/states-are-cracking-down-on-face-wash/ (accessed Jun 2, 2021).
    (54) Andrady, A. L.Microplastics in the Marine Environment. Marine Pollution Bulletin. Pergamon August 1, 2011, pp 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030.
    (55) Andrady, A. L.The Plastic in Microplastics: A Review. Marine Pollution Bulletin. Elsevier Ltd June 15, 2017, pp 12–22. https://doi.org/10.1016/j.marpolbul.2017.01.082.
    (56) Gewert, B.; Plassmann, M. M.; Macleod, M.Pathways for Degradation of Plastic Polymers Floating in the Marine Environment. Environ. Sci. Process. Impacts 2015, 17 (9), 1513–1521. https://doi.org/10.1039/c5em00207a.
    (57) Hardesty, B. D.; Harari, J.; Isobe, A.; Lebreton, L.; Maximenko, N.; Potemra, J.; vanSebille, E.; Dick Vethaak, A.; Wilcox, C.Using Numerical Model Simulations to Improve the Understanding of Micro-Plastic Distribution and Pathways in the Marine Environment. Frontiers in Marine Science. Frontiers Media S. A March 31, 2017, p 30. https://doi.org/10.3389/fmars.2017.00030.
    (58) Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J. H.; Abu-Omar, M.; Scott, S. L.; Suh, S.Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8 (9), 3494–3511. https://doi.org/10.1021/ACSSUSCHEMENG.9B06635.
    (59) Rochman, C. M.; Hoellein, T.The Global Odyssey of Plastic Pollution. Science (80-. ). 2020, 368 (6496), 1184–1185. https://doi.org/10.1126/science.abc4428.
    (60) Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S.Microplastic Pollution in the Surface Waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 2013, 77 (1–2), 177–182. https://doi.org/10.1016/j.marpolbul.2013.10.007.
    (61) Wong, G.; Löwemark, L.; Kunz, A.Microplastic Pollution of the Tamsui River and Its Tributaries in Northern Taiwan: Spatial Heterogeneity and Correlation with Precipitation. Environ. Pollut. 2020, 260, 113935. https://doi.org/10.1016/j.envpol.2020.113935.
    (62) Bancin, L. J.; Walther, B. A.; Lee, Y. C.; Kunz, A.Two-Dimensional Distribution and Abundance of Micro- and Mesoplastic Pollution in the Surface Sediment of Xialiao Beach, New Taipei City, Taiwan. Mar. Pollut. Bull. 2019, 140, 75–85. https://doi.org/10.1016/j.marpolbul.2019.01.028.
    (63) Chen, M. C.; Chen, T. H.Spatial and Seasonal Distribution of Microplastics on Sandy Beaches along the Coast of the Hengchun Peninsula, Taiwan. Mar. Pollut. Bull. 2020, 151, 110861. https://doi.org/10.1016/j.marpolbul.2019.110861.
    (64) Fakour, H.; Lo, S. L.; Yoashi, N. T.; Massao, A. M.; Lema, N. N.; Mkhontfo, F. B.; Jomalema, P. C.; Jumanne, N. S.; Mbuya, B. H.; Mtweve, J. T.; Imani, M.Quantification and Analysis of Microplastics in Farmland Soils: Characterization, Sources, and Pathways. Agric. 2021, 11 (4). https://doi.org/10.3390/agriculture11040330.
    (65) Kunz, A.; Walther, B. A.; Löwemark, L.; Lee, Y. C.Distribution and Quantity of Microplastic on Sandy Beaches along the Northern Coast of Taiwan. Mar. Pollut. Bull. 2016, 111 (1–2), 126–135. https://doi.org/10.1016/j.marpolbul.2016.07.022.
    (66) Stock, F.; Kochleus, C.; Bänsch-Baltruschat, B.; Brennholt, N.; Reifferscheid, G.Sampling Techniques and Preparation Methods for Microplastic Analyses in the Aquatic Environment – A Review. TrAC - Trends in Analytical Chemistry. Elsevier B.V. April 1, 2019, pp 84–92. https://doi.org/10.1016/j.trac.2019.01.014.
    (67) Bläsing, M.; Amelung, W.Plastics in Soil: Analytical Methods and Possible Sources. Science of the Total Environment. Elsevier B.V. January 15, 2018, pp 422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086.
    (68) He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L.Microplastics in Soils: Analytical Methods, Pollution Characteristics and Ecological Risks. TrAC - Trends in Analytical Chemistry. Elsevier B.V. December 1, 2018, pp 163–172. https://doi.org/10.1016/j.trac.2018.10.006.
    (69) Crichton, E. M.; Noël, M.; Gies, E. A.; Ross, P. S.A Novel, Density-Independent and FTIR-Compatible Approach for the Rapid Extraction of Microplastics from Aquatic Sediments. Anal. Methods 2017, 9 (9), 1419–1428. https://doi.org/10.1039/c6ay02733d.
    (70) Prata, J. C.; daCosta, J. P.; Duarte, A. C.; Rocha-Santos, T.Methods for Sampling and Detection of Microplastics in Water and Sediment: A Critical Review. TrAC - Trends in Analytical Chemistry. Elsevier B.V. January 1, 2019, pp 150–159. https://doi.org/10.1016/j.trac.2018.10.029.
    (71) Suhendra, E.; Chang, C.-H.; Hou, W.-C.; Hsieh, Y.-C.A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters. Int. J. Mol. Sci. 2020, Vol. 21, Page 4554 2020, 21 (12), 4554. https://doi.org/10.3390/IJMS21124554.
    (72) Sieber, R.; Kawecki, D.; Nowack, B.Dynamic Probabilistic Material Flow Analysis of Rubber Release from Tires into the Environment. Environ. Pollut. 2020, 258, 113573. https://doi.org/10.1016/j.envpol.2019.113573.
    (73) Bai, M.; Li, D.Quantity of Plastic Waste Input into the Ocean from China Based on a Material Flow Analysis Model1. https://doi.org/10.1139/anc-2018-0028 2020, 3 (1), 1–5. https://doi.org/10.1139/ANC-2018-0028.
    (74) Affairs, I.; Rechberger, H.Microplastics Pollution - A Qualitative Material Flow Analysis. 2017, No. June.
    (75) Besseling, E.; Quik, J. T. K.; Sun, M.; Koelmans, A. A.Fate of Nano- and Microplastic in Freshwater Systems: A Modeling Study. Environ. Pollut. 2017, 220, 540–548. https://doi.org/10.1016/j.envpol.2016.10.001.
    (76) 鄭建南.台灣地區民生用塑膠製品物質流分析, 國立臺北大學, 2006.
    (77) 廖保雲.台灣地區橡膠資源物質流分析與永續性發展, 國立臺北科技大學, 2012.
    (78) Kawecki, D.; Scheeder, P. R. W.; Nowack, B.Probabilistic Material Flow Analysis of Seven Commodity Plastics in Europe. Environ. Sci. Technol. 2018, 52 (17), 9874–9888. https://doi.org/10.1021/acs.est.8b01513.
    (79) Kawecki, D.; Nowack, B.A Proxy-Based Approach to Predict Spatially Resolved Emissions of Macro- and Microplastic to the Environment. Sci. Total Environ. 2020, 748, 141137. https://doi.org/10.1016/j.scitotenv.2020.141137.
    (80) Gottschalk, F.; Scholz, R. W.; Nowack, B.Probabilistic Material Flow Modeling for Assessing the Environmental Exposure to Compounds: Methodology and an Application to Engineered Nano-TiO2 Particles. Environ. Model. Softw. 2010, 25 (3), 320–332. https://doi.org/10.1016/j.envsoft.2009.08.011.
    (81) Laner, D.; Feketitsch, J.; Rechberger, H.; Fellner, J.A Novel Approach to Characterize Data Uncertainty in Material Flow Analysis and Its Application to Plastics Flows in Austria. J. Ind. Ecol. 2016, 20 (5), 1050–1063. https://doi.org/10.1111/jiec.12326.
    (82) 莊士賢.貝氏定理應用於隨機變數的機率分布函數選定. 中華民國第十六屆海洋工程研討會論文集 1994.
    (83) Ho, L. C.PETROCHEMICAL INDUSTRY OF TAIWAN, R. O. C.; 2018.
    (84) ECVM – pvc.org https://pvc.org/ (accessed Jun 5, 2021).
    (85) Hahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E.; Purnell, P.An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. https://doi.org/10.1016/J.JHAZMAT.2017.10.014.
    (86) Turner, A.; Filella, M.Hazardous Metal Additives in Plastics and Their Environmental Impacts. Environ. Int. 2021, 156, 106622. https://doi.org/10.1016/J.ENVINT.2021.106622.
    (87) Gallo, F.; Fossi, C.; Weber, R.; Santillo, D.; Sousa, J.; Ingram, I.; Nadal, A.; Romano, D.Marine Litter Plastics and Microplastics and Their Toxic Chemicals Components: The Need for Urgent Preventive Measures. Environ. Sci. Eur. 2018 301 2018, 30 (1), 1–14. https://doi.org/10.1186/S12302-018-0139-Z.
    (88) Wang, C.; Zhao, J.; Xing, B.Environmental Source, Fate, and Toxicity of Microplastics. J. Hazard. Mater. 2021, 407, 124357. https://doi.org/10.1016/J.JHAZMAT.2020.124357.
    (89) 行政院環保署環境資料開放平台 https://data.epa.gov.tw/ (accessed Jun 3, 2021).
    (90) Sridharan, S.; Kumar, M.; Singh, L.; Bolan, N. S.; Saha, M.Microplastics as an Emerging Source of Particulate Air Pollution: A Critical Review. J. Hazard. Mater. 2021, 418, 126245. https://doi.org/10.1016/j.jhazmat.2021.126245.
    (91) Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B.Microplastic Contamination in an Urban Area: A Case Study in Greater Paris. Environ. Chem. 2015, 12 (5), 592–599. https://doi.org/10.1071/EN14167.
    (92) Abbasi, S.; Keshavarzi, B.; Moore, F.; Turner, A.; Kelly, F. J.; Dominguez, A. O.; Jaafarzadeh, N.Distribution and Potential Health Impacts of Microplastics and Microrubbers in Air and Street Dusts from Asaluyeh County, Iran. Environ. Pollut. 2019, 244, 153–164. https://doi.org/10.1016/j.envpol.2018.10.039.
    (93) vanWijnen, J.; Ragas, A. M. J.; Kroeze, C.Modelling Global River Export of Microplastics to the Marine Environment: Sources and Future Trends. Sci. Total Environ. 2019, 673, 392–401. https://doi.org/10.1016/j.scitotenv.2019.04.078.
    (94) Auta, H. S.; Emenike, C. U.; Fauziah, S. H.Distribution and Importance of Microplastics in the Marine EnvironmentA Review of the Sources, Fate, Effects, and Potential Solutions. Environment International. Elsevier Ltd May 1, 2017, pp 165–176. https://doi.org/10.1016/j.envint.2017.02.013.
    (95) Liu, K.; Wu, T.; Wang, X.; Song, Z.; Zong, C.; Wei, N.; Li, D.Consistent Transport of Terrestrial Microplastics to the Ocean through Atmosphere. Environ. Sci. Technol. 2019, 53 (18), 10612–10619. https://doi.org/10.1021/acs.est.9b03427.
    (96) 海關進出口統計 https://portal.sw.nat.gov.tw/APGA/GA30 (accessed Jun 8, 2021).
    (97) 財政部關務署 https://web.customs.gov.tw/ (accessed Jun 8, 2021).
    (98) ITC https://www.intracen.org/ (accessed Jun 8, 2021).
    (99) Polyvinyl Chloride Market To Witness Swift Growth Owing To Increasing Demand From Agriculture Industries Till 2020: Grand View Research http://www.digitaljournal.com/pr/3649404.
    (100) 行政院主計處(DGBAS).國情統計通報. 行政院主計處(DGBAS) 2007.
    (101) 林國權; 范振誠.全球工程塑膠產業發展趨勢對我國石化業發展機會; 經濟部, 2010.
    (102) 南亞塑膠工業股份有限公司.南亞塑膠工業股份有限公司 106年度年報; 2017.
    (103) 華夏海灣塑膠股份有險公司.華夏海灣塑膠股份有險公司 106年度年報; 2017.
    (104) 大洋塑膠工業股份有限公司.大洋塑膠工業股份有限公司 106年度年報; 2017.
    (105) 農業統計資料查詢 https://agrstat.coa.gov.tw/sdweb/public/common/Download.aspx (accessed Jun 8, 2021).
    (106) 歡迎 - 行政院環保署 EPA https://data.epa.gov.tw/ (accessed Jun 8, 2021).
    (107) 旅行圖書館 https://cleanocean.sow.org.tw/result.php#link02 (accessed Jun 8, 2021).
    (108) 觀光業務統計 - 交通部觀光局行政資訊系統 https://admin.taiwan.net.tw/FileUploadCategoryListC003330.aspx?CategoryID=b69f0538-b028-4376-bdaa-7bac74948324&appname=FileUploadCategoryListC003330 (accessed Jun 8, 2021).
    (109) 水利署中文版全球資訊網 https://www.wra.gov.tw/#Group_22409_GFdLLgbuNq (accessed Jun 7, 2021).
    (110) He, P.; Chen, L.; Shao, L.; Zhang, H.; Lü, F.Municipal Solid Waste (MSW)Landfill: A Source of Microplastics? -Evidence of Microplastics in Landfill Leachate. Water Res. 2019, 159, 38–45. https://doi.org/10.1016/j.watres.2019.04.060.
    (111) Szewc, K.; Graca, B.; Dołęga, A.Atmospheric Deposition of Microplastics in the Coastal Zone: Characteristics and Relationship with Meteorological Factors. Sci. Total Environ. 2021, 761, 143272. https://doi.org/10.1016/j.scitotenv.2020.143272.
    (112) Akhbarizadeh, R.; Dobaradaran, S.; Amouei Torkmahalleh, M.; Saeedi, R.; Aibaghi, R.; Faraji Ghasemi, F.Suspended Fine Particulate Matter (PM2.5), Microplastics (MPs), and Polycyclic Aromatic Hydrocarbons (PAHs) in Air: Their Possible Relationships and Health Implications. Environ. Res. 2021, 192, 110339. https://doi.org/10.1016/j.envres.2020.110339.
    (113) Liu, K.; Wang, X.; Wei, N.; Song, Z.; Li, D.Accurate Quantification and Transport Estimation of Suspended Atmospheric Microplastics in Megacities: Implications for Human Health. Environ. Int. 2019, 132, 105127. https://doi.org/10.1016/j.envint.2019.105127.
    (114) Zhang, Q.; Zhao, Y.; Du, F.; Cai, H.; Wang, G.; Shi, H.Microplastic Fallout in Different Indoor Environments. Environ. Sci. Technol. 2020, 54 (11), 6530–6539. https://doi.org/10.1021/acs.est.0c00087.
    (115) 中華民國內政部地政司全球資訊網-政府資訊公開 https://www.land.moi.gov.tw/chhtml/content/44 (accessed Jun 7, 2021).
    (116) Yang, Z.; Lü, F.; Zhang, H.; Wang, W.; Shao, L.; Ye, J.; He, P.Is Incineration the Terminator of Plastics and Microplastics? J. Hazard. Mater. 2021, 401 (June 2020), 123429. https://doi.org/10.1016/j.jhazmat.2020.123429.
    (117) Karlsson, T. M.; Arneborg, L.; Broström, G.; Almroth, B. C.; Gipperth, L.; Hassellöv, M.The Unaccountability Case of Plastic Pellet Pollution. Mar. Pollut. Bull. 2018, 129 (1), 52–60. https://doi.org/10.1016/j.marpolbul.2018.01.041.
    (118) 中華民國統計資訊網(一般民眾) https://www1.stat.gov.tw/mp.asp?mp=3 (accessed Jun 7, 2021).
    (119) 行政院環境保護署.行政院環境保護署 - 空氣品質監測網.
    (120) Baillie, I. C.Soil Survey Staff 1999, Soil Taxonomy. Soil Use Manag. 2006, 17 (1), 57–60. https://doi.org/10.1111/j.1475-2743.2001.tb00008.x.
    (121) Lin, C.-H.; Yen, Y.-C.; Lin, C.-M.; Huang, Y.-T.二手衣回收與服飾設計應用之研究. 華岡紡織期刊 2020.

    無法下載圖示 校內:2026-08-26公開
    校外:2026-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE