簡易檢索 / 詳目顯示

研究生: 黃柏鈞
Huang, Po-Chun
論文名稱: 一系列小型人形機器人之設計與實現
Design and Implementation of a Series of Small-sized Humanoid Robots
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 131
中文關鍵詞: 人形機器人平行四邊形連桿機構人機介面
外文關鍵詞: humanoid robot, parallelogram four-bar linkage mechanism, human-machine interface, AndroSot, HuroCup, FIRA, RoboCup
相關次數: 點閱:134下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在一系列小型人型機器人之設計與實現,系列機器人包含用於FIRA 2010 AndroSot與HuroCup組別,以及RoboCup 2011 Japan Open三種不同功能之人型機器人;論文介紹這一系列機器人之軟硬體系統架構、硬體規格、設計流程、創新之處,以及重要設計原則,並著重於討論一項基於平行四邊形連桿機構之腳部結構設計,與人機介面的多樣化新增功能。其中新型腳部設計部分,討論與傳統構型比較之優缺點,新構型不同馬達配置方式的比較,以及平行四邊形連桿機構腳部的設計原則,而人機介面部分則逐項介紹新增功能的用途。最後以FIRA比賽項目中的短跑與馬拉松實際測試新型腳部行走時的晃動現象與設計實用性。實驗結果顯示此新型腳部設計能夠達到16.5cm/s之行走速度,且此行走速度可用於實際比賽情況,由感測器波型也顯示行走時更佳穩定。此系列機器人分別於FIRA 2010獲得AndroSot組別季軍、HuroCup組別雙項目冠軍與總積分冠軍,並於RoboCup 2011日本公開賽獲得三對三足球賽亞軍的成績。

    The design and implementation of a series of small-sized humanoid robots are proposed in this thesis. The series includes three types of small-sized humanoid robots participating in AndroSot and HuroCup tournaments in FIRA 2010 and in RoboCup Japan Open 2011. Firstly, the architecture of the system hardware and software, the specifications of the hardware, the design process, the new features of the robots and important principles for designing a robot are addressed in details. A new leg structure based on the parallelogram four-bar linkage mechanism (PFLM) is then designed, where a new human-machine interface (HMI) is also developed. Secondly, the pros and cons in comparison with the traditional leg structure, a comparison among the PFLM legs with various servo motor configurations, and the principles for designing the PFLM legs are examined. Finally, the swing phenomenon of walking motion and practicability of the chosen PFLM leg are tested using the sprint and marathon included in the HuroCup games. Experimental results demonstrate that the walking speed of PFLM legs can achieve 16.5cm/s, and it is stable enough for using in real competitions. The data from the sensors also show that the robot walks in a more stable way with PFLM legs. This series of robots won the 3rd place in AndroSot tournament, the 1st place in HuroCup tournament in FIRA 2010, and the 2nd place in the KidSize Humanoid League in RoboCup Japan Open 2011.

    Abstract I Acknowledgment III Contents IV List of Figures VIII List of Tables XIII Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2. Hardware Specifications of the Humanoid Robots 6 2.1 Introduction 6 2.2 The Configurations of Robots 9 2.2.1 aiRobots-AndroSot-3 11 2.2.2 aiRobots-V FIRA 2010 Type 13 2.2.3 aiRobots-VI RoboCup 2011 Type 15 2.3 Hardware Specifications 17 2.3.1 Actuators 17 2.3.2 Motion Controller 19 2.3.3 Computer 21 2.3.4 Camera 25 2.3.5 Wi-Fi Module 26 2.3.6 Zigbee Module 27 2.3.7 Accelerometer 28 2.3.8 Gyroscope 29 2.3.9 Force Sensor 30 2.3.10 Li-po Batteries 31 2.4 Summary 32 Chapter 3. Design of Mechanical Architectures 33 3.1 Introduction 33 3.2 Flow Chart of Design and Implementation of a Robot 34 3.3 Principles, New Solutions, and Useful Parameters 38 3.3.1 Principles and Notices 38 3.3.1.1 Considering Game Rules and Purposes of the Robot 38 3.3.1.2 The Material of Mechanical Parts 39 3.3.1.3 The Dimensions of Mechanical Parts 41 3.3.1.4 The Shapes of Mechanical Parts 43 3.3.1.5 The Routes of Signal Lines 44 3.3.2 Solutions to Some Cases 47 3.3.2.1 The Usage of Needle Bearing 47 3.3.2.2 The Shock-absorbing Device 49 3.3.2.3 The Locations of Actuators on the Upper Body 49 3.3.2.4 The Way to Place the Computer 50 3.3.3 Useful Parameters 52 3.3.3.1 The Screws 52 3.3.3.2 The Bended Edges of Sheet Mental 53 3.4 Evolution and Features of the Series of Small-sized Humanoid Robots 54 3.4.1 Design of aiRobots-AndroSot-3 57 3.4.2 Design of aiRobots-V FIRA 2010 Type 60 3.4.3 Design of aiRobots-VI RoboCup 2011 Type 62 3.5 Designing a New Type of Leg Structure 65 3.5.1 Parallelogram Four-bar Linkage Mechanism 67 3.5.2 Several Configurations of PFLM legs 72 3.5.3 The Principles of Designing PFLM Legs 80 3.5.3.1 The Mechanical Accuracy 80 3.5.3.2 The Shape of Links 81 3.5.3.3 Avoid Dead Centers 82 3.6 Summary 82 Chapter 4. Development of Human-machine Interface 83 4.1 Introduction 83 4.2 Basic Functions of HMI 84 4.2.1 Connect to a Robot 86 4.2.2 Edit Pose 86 4.2.3 Edit Motion 88 4.2.4 Verify Motions Using Real Robot 89 4.3 New Function of HMI 89 4.3.1 Robot Configuration Setting 90 4.3.2 Motor Speed Calculation Using Specified Value 91 4.3.3 Graphical Representation of Robot Poses 94 4.3.4 Leg Pose Edit Using Inverse Kinetic 96 4.3.5 Graphical Demonstration and Motor Angle Editing 100 4.3.6 Monitoring and Recording of Robot Sensor Values 101 4.3.7 Monitoring of Communication Information 101 4.3.8 Whole Body Remote Control Interface 102 4.3.9 Output File of Robot Motions 103 4.4 Summary 104 Chapter 5. Walking Balancing and Motion Control Strategies 105 5.1 Introduction 105 5.2 Implementation of Gait Pattern 106 5.3 Balance Control Using Fuzzy Logic Control 109 5.4 Implementation of Robot Hardware Control 112 5.5 Summary 113 Chapter 6. Experiment Results 114 6.1 Introduction 114 6.2 Experimental Results 115 6.2.1 Comparison of Walking Speed 115 6.2.2 Comparison of Sensors Information during Walking Period 117 6.2.2.1 Case of Traditional Legs 117 6.2.2.2 Case of PFLM Legs 118 Chapter 7. Conclusions and Future Works 123 7.1 Conclusions 123 7.2 Future Works 125 References 128 Biography 131

    [1] FIRA, http://www.fira.net/
    [2] RoboCup, http://www.robocup.org/
    [3] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “Dynamics and balance of a humanoid robot during manipulation tasks,” IEEE Trans. Robotics, vol. 22, no. 3, pp. 568-575, Jun. 2006.
    [4] S. Kajita, T. Nagasaki, K. Kaneko, and H. Hirukawa, “ZMP-based biped running control,” IEEE Trans. Robotics, vol. 14, no. 2, pp. 63-72, Jun. 2007.
    [5] E. Ohashi, T. Aiko, T. Tsuji, H. Nishi, and K. Ohnishi, “Collision avoidance method of humanoid robot with arm force,” IEEE Trans. Industrial Electronics, vol. 54, no. 3, pp. 1632-1641, Jun. 2007.
    [6] C. Fu and K. Chen, “Gait synthesis and sensory control of stair climbing for a humanoid robot,” IEEE Trans. Industrial Electronics, vol. 55, no. 5, pp. 2111-2120, May. 2008.
    [7] K. Erbatur and O. Kurt, “Natural ZMP trajectories for biped robot reference generation,” IEEE Trans. Industrial Electronics, vol. 56, no. 3, pp. 835-845, Mar. 2009.
    [8] P. Sardain and G. Bessonnet, “Zero moment point-measurements from a human walker wearing robot feet as shoes,” IEEE Trans. Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 34, no. 5, pp. 638-648, Sep. 2004.
    [9] Q. Huang, K. Kaneko, K. Yokoi, S. Kajita, T. Kotoku, N. Koyachi, H. Arai, N. Imamura, K. Komoriya, and K. Tanie, “Balance control of a biped robot combining off-line pattern with real-time modification,” in Proc. IEEE Int. Conf. Robotics and Automation, 2000, pp. 3346-3352.
    [10] P. Sardain and G. Bessonnet, “Forces acting on a biped robot. Center of pressure-zero moment point,” IEEE Trans. Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 34, pp. 630–372, Sep. 2004.
    [11] F. Asano, M. Yamakita, N. Kamamichi, and Z. W. Luo, “A novel gait generation for biped walking robots based on mechanical energy constraint,” IEEE Trans. Robotics and Automation, vol. 20, no. 3, pp. 565-573, Jun. 2004.
    [12] Q. Huang and Y. Nakamura, “Sensory reflex control for humanoid walking,” IEEE Trans. Robotics, vol. 21, no. 5, pp. 977-984, Oct. 2005.
    [13] K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kanedo, K. Yokoi, and H. Hirukawa, “Real-time planning of humanoid robot’s gait for force-controlled manipulation,” IEEE/ASME Trans. Mechatronics, vol. 12, no. 1, pp. 53-62, Feb. 2007.
    [14] P. Sardain, M. Rostami, and G. Bessonnet, “An anthropomorphic biped robot: dynamic concepts and technological design,” IEEE Trans. Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 28, no. 6, pp.823-838, Nov. 1998.
    [15] Y. D. Kim, B. J. Lee, J. H. Ryu, and J. H. Kim, “Landing force control for humanoid robot by time-domain passivity approach,” IEEE Trans. Robotics, vol. 23, no. 6, pp. 1294-1301, Dec. 2007.
    [16] H. Minakata, H. Seki, and S. Tadakuma, “A study of energy-saving shoes for robot considering lateral plane motion,” IEEE Trans. Industrial Electronics, vol. 55, no. 3, pp. 1271-1276, Mar. 2008.
    [17] J. Morimoto, G. Endo, J. Nakanishi, and G. Cheng, “A biologically inspired biped locomotion strategy for humanoid robots: Modulation of sinusoidal patterns by a coupled oscillator model,” IEEE Trans. Robotics, vol. 24, no. 1, pp. 185-191, Feb. 2008.
    [18] T. Zielinska, “Biological inspiration used for robots motion synthesis,” Journal of Physiology - Paris, vol. 103, pp. 133-140, Jul. 2009.
    [19] ROBOTIS, http://www.robotis.com/
    [20] Arduino Mega, http://arduino.cc/en/Main/ArduinoBoardMega
    [21] Axiomtek, http://www.axiomtek.com.tw/
    [22] Logitech, http://www.logitech.com/zh-tw
    [23] CERIO, http://www.cerio.com.tw/
    [24] ROBOTIS ZIG-100,
    http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
    [25] Hitachi H48C,
    http://www.parallax.com/dl/docs/prod/acc/HitachiH48C3AxisAccelerometer.pdf
    [26] DMP RM-G145, http://www.roboard.com/G145.html
    [27] FSR402, http://www.interlinkelec.com/Product/Standard-402-FSR
    [28] SolidWorks, http://www.solidworks.com/
    [29] FIRA HuroCup laws,
    http://112.175.232.175/~fira/?module=file&act=procFileDownload&file_srl=3336&sid=9bc6a9bca3083475feccee69fa988763
    [30] RoboCup HumanoidLeagueRules2010,
    http://www.tzi.de/humanoid/bin/view/Website/Downloads
    [31] D. A.Winter, The Biomechanics and Motor Control of Human Movement (2nd ed.), New York: Wiley, 1990.
    [32] Bioloid Robot Kit, http://www.robotis.com/xe/bioloid_en
    [33] Dr.-Ing. Richard Ernst, Wörterbuch der Industriellen Technik (5th ed.), Wiesbaden: Oscar Brandstetter Verlag, 1989.
    [34] R. S. Hartenberg and J. Denavit, Kinematic Synthesis of Linkages, New York: McGraw-Hill, 1964.
    [35] http://www.yourdictionary.com/dead-center
    [36] S. H. Liu, Design and implementation of a gait pattern generator based on genetic algorithms and fuzzy control for small-sized humanoid robot by using SOPC, Master Thesis, National Cheng Kung University, July, 2008.
    [37] S. W. Lai, Design and implementation of reinforce learning based fuzzy gait controller for humanoid robot, Master Thesis, National Cheng Kung University, July, 2009.
    [38] K. Y. Chong, Design and implememtation of fuzzy policy gradient gait learning method for humanoid robot, Master Thesis, National Cheng Kung University, July, 2010.
    [39] C. C. Lee, “Fuzzy logic in control system: Fuzzy logic controller-part I,” IEEE Trans. Systems, Man and Cybernetics, vol. 20, no. 2, pp. 404-418, 1990.
    [40] C. C. Lee, “Fuzzy logic in control system: Fuzzy logic controller-part II,” IEEE Trans. Systems, Man and Cybernetics, vol. 20, no. 2, pp. 419-435, 1990.
    [41] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985.

    下載圖示 校內:2016-08-24公開
    校外:2016-08-24公開
    QR CODE