簡易檢索 / 詳目顯示

研究生: 趙皇奇
Chao, Huang-chi
論文名稱: 莫氏立方體上的泛連接性
Panconnectivity of Mobius cubes
指導教授: 謝孫源
Hsieh, Sun-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 27
中文關鍵詞: 泛圓性泛連接性超立方體莫氏立方體互連網路
外文關鍵詞: Graph-theoretic interconnection networks, panconnected, pancyclicity, Mobius cubes, hypercubes
相關次數: 點閱:129下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 莫氏立方體(Mobius cube)是一個超立方體(hypercube)的變形,且有著和超立方體相同個數的點以及邊。給定一個圖形,若是這個圖中任意兩點u,v皆存在著路徑長l,從最短路徑d(u,v)至最常路徑(漢米爾頓路徑)則我們稱這個圖具有泛連接性(panconnected)這個性質。在本篇論文中,我們便是要探討在莫氏立方體(Mobius cube)中的這個泛連接性性質(panconnectivity)的問題。

    The Mobius cubes MQ_n are hypercube variants that give better performance with the same number of processors and links. A graph G=(V;E) is said to be panconnected if for any two distinct vertices u and v of G and for each l satisfying d(u,v)≦l≦|V|-1, there is a uv-path of length l in G. In this article, we will show that for any two different vertices u and v in MQ_n for n≧3, there exists uv-path of length l with d(u,v)+2≦l≦(2^n)-1 except for a shortest uv-path.

    1 Introduction 4 1.1 Motivation and Related Diussion 5 1.2 Preview of This Thesis 7 2 Preliminaries 8 2.1 Basic Definitions of Graph Theory 8 2.2 Basic Definitions of Mobius cubes 9 3 Panconnectivity of Mobius cubes 13 4 Concluding Remarks 25

    [1] P. Cull, and S. M. Larson, “The Mobius cubes,” in IEEE Transactions on Computers, vol. 44, no. 5, pp. 647-659, 1995.
    [2] Jianxi Fan, “Hamiltonian-connectivity and cycle-embedding of the Mobius cubes,” Information Processing Letters, vol. 82, pp. 113-117, 2002.
    [3] J. C. Bermond, Ed., “Interconnection Networks,” a special issue of Discrete Applied Mathematics, vol. 37-38, 1992.
    [4] S. Y. Hsieh, G. H. Chen, and C. W. Ho, “Fault-free Hamiltonian cycles in faulty arrangement graphs,” IEEE Transactions on Parallel and Distributed Systems, vol. 10, no. 3, pp. 223-237, 1999.
    [5] Jung-Heum Park, Hee-Chul Kim, "Fault-Hamiltonicity of Hypercube-Like Interconnection Networks," Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium(IPDPS05), 2005.
    [6] F. Harary, Graph Theory, Addison-wesley, Massachusetts, 1972.
    [7] D. F. Hsu, “Interconnection Networks and Algorithms,” a special issue of Networks, vol. 23, no. 4, 1993.
    [8] Y. C. Tseng, S. H. Chang, and J. P. Sheu, “Fault-tolerant ring embedding in star graphs with both link and node failures,” IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 12, pp. 1185-1195, 1997.
    [9] W. Huang, Y. Chuang, J. J. M. Tan, L. Hsu, “Fault-free Hamiltonian cycles in faulty Mobius cubes,” Computaciony Systemas, vol. 4, no. 2, pp. 106-114, 2000.
    [10] A. Esfahanian, L. M. Ni, and B. E. Sagan, “The twisted n-cube with application to multiprocessing,” in IEEE Transactions on Computers, vol. 40, pp. 88-93, January 1991.
    [11] A. El-Amawy and S. Latifi, “Properties and performance of folded hypercubes,” in IEEE Transactions on Parallel and Distributed system, vol. 2, pp. 31-42, January 1991.
    [12] Kemal Efe, P. K. Blackwell, W. Slough, T. Shiau, “Topological Properties of the Crossed Cube Architecture,” in Parallel Computing, vol. 20, Number 12, pp. 1763-1775, November 1994.
    [13] Aniruddha S. Vaidya, P. S. Nagendra Rao, S. Ravi Shankar, “A Class of Hypercube-Like Networks,” in Proceedings of the Fifth IEEE Symposium on Parallel and Distributed Processing, pp. 800-805, 1993.
    [14] J. -M. Chang, J. -S. Yang, Y. -L. Wang, Y. Cheng, “Panconnectivity, fault-tolerant Hamiltonicity and Hamiltonian-connectivity in alternating group graphs,” in Networks, vol. 44, pp. 302-310, 2004.
    [15] Sheng Y., Tian F., Wei B, "Panconnectivity of locally connected claw-free graphs". in Discrete Mathematics, vol. 203, number 1, pp. 253-260, 1999.
    [16] T.-K. Li, C.-H. Tsai, J.J.M. Tan, L.-H. Hsu, "Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes". in Information Processing Letters, vol. 87, pp. 107-110, 2003.
    [17] M. Ma, J.-M. Xu, "Panconnectivity of locally twisted cubes". in Applied Mathematics Letters, vol. 19, pp. 673-677, 2006.

    下載圖示 校內:2009-07-12公開
    校外:2009-07-12公開
    QR CODE