| 研究生: |
史銘翔 Shin, Ming-Hsiang |
|---|---|
| 論文名稱: |
含茀高分子化合物之合成及光電性質研究 Studies on the Synthesis and Optoelectronic Properties of Fluorene Polymer |
| 指導教授: |
葉茂榮
Yeh, Mou-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 茀 、高分子 |
| 外文關鍵詞: | Fluorene, Polymer |
| 相關次數: | 點閱:46 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機二極體(OLEDs)在顯示器上的貢獻,倍受學界及產業界的注目,然而高分子發光二極體(PLED)此種發光元件仍有一些問題尚需克服。許多學者倡導合成具有孤立發光團的有機光分子,改善由於聚合度不一影響發光純度的問題。
由於聚醯胺-醯亞胺及聚酯-醯亞胺不僅改善了聚醯亞胺溶解度及加工性不佳的缺點,並且保有聚醯亞胺的熱穩定性佳等優點,是著名的高性能高分子材料。故本論文嘗試將茀導入分子結構,並以低溫聚合法合成聚醯胺-醯亞胺及聚酯-醯亞胺,也嘗試將CF3基導入分子結構中,使溶解度有所提升。
將這些高分子進行性質測試,其本性黏度介於0.22~0.31dL/g之間。在溶解度測定方面,這些高分子皆能溶於非質子極性溶劑如NMP、DMF、DMSO中,更進一步導入CF3,甚至還可部分溶於一般有機溶劑,例如: DCM、acetone。在熱性質的測試方面,這些高分子在氮氣下損失10%重量的溫度在667~823K之間。而由高分子溶於NMP所得的放射光譜,發現高分子的放射波長在425~456nm,在可見光藍光範圍。從UV/Vis與CV測試,得到的LUMO介於-4.47~-4.37 eV之間,HOMO介於-7.56~-7.12 eV之間;在XRD測試結果,得知所合成高分子材料均屬非結晶的狀態。在動力學方面,得知活化能隨著轉化率改變而改變。
Orangic lignt-emitting diodes (OLEDs) have recently attracted attention of their potential use in display technology, and then intrigued interests in both academic and industrial circles. However, polymer lignt-emitting diodes (PLED) have some aspects need further improvement. Recently many researchers have synthesized polymers containing isolated luminescent functional groups in order to improve color impurity arose from the effective length of conjugation.
Poly(amide-imide)s and poly(ester-imide)s are well known as high-
performance polymeric materials. Those modified polyimides not only improve processability and solubility, but also exhibit excellent thermal stability. In this study, we introduce fluorene into poly(amide-imide)s and poly(ester- imide)s at low temperature in polymerization. Trifluoromethyl group has also been introduced into targeted molecules to promote solubility.
The properties of the synthesized polymers were tested. These polymers having intrinsic viscosity of 0.22~0.31g/dl . They were soluble in aprotic polar solvents such as NMP, DMF, DMSO. The polymers containing CF3 function group were more soluble in organic solvents. Under nitrogen atmosphere, these polymers loss 10% of weight between 667~823K. The emittive wavelengths of these polymers in NMP are located at 425~456 nm in the blue visible region. The cyclic voltammetric and optical investigations indicated that LUMO and HOMO level of the polymers are in the region of -4.47~-4.37 eV and -7.56~-7.12 eV. The wide-angle X-ray diffraction measurements showed that the polymers are amorphous. According to kinetic study, activation energy is dependent on conversion.
參考文獻
1. 蘇水祥, 橫山明聰, 朱健慈, 江俊德, 科學發展, 2001, 349, 38
2. M. Pope, H. P. Kallman, P. Mangnante, J. Chem. Phys. 1963, 38; 2042
3. P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Thin Solid Films, 1982, 171, 94
4. C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 1987, 51, 913
5. R. H. Partridge, Polymer, 1983, 24, 733
6. H. Burroughes, D. D. C. Bradley, A. R. Brown, N. Marks, K. Mackay, R.H. Friend, P. L. Burns, A. B. Holmes, Nature, 1990, 347, 539
7. Y. Ohmori, M. Uchida, K. Muro., K. Yoshino, Jan. J. Appl. Phys. 1991, 30, L1941
8. G. Grem, G. Leditzky, B. Ullrich, G. Leising, Adv. Mater. 1992, 4, 36
9. D. Braun, A. J. Heeger, Appl. Phys. Lett. 1991, 58, 1982
10. S. Doi, M. Kuwabara, T. Noguchi, T. Ohnishi, Synth. Met. 1993, 57, 4174
11. Z. Yang, I. Sokolik, F. E. Karasz, Macromolecules, 1993, 26, 1188
12. C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 1989, 65, 3610
13. C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Japan. J. Appl. Phys. 1988, 27, L713
14. M. Era, C. Adachi, T. Tsutsui, S. Saito, Chem. Phys. Lett. 1991, 178, 488
15. J. Kido, M. Kohda, K. Okuyama, K. Nadai, Appl. Phys. Lett. 1992, 61, 761
16. J. Kido, M. Kimura, K. Nagai, Science, 1995, 267, 1332
17. K. W. Klupfel, O. Sus, H. Behmenburg, W. Neugebauer, Us 3, 1965, 180, 730
18. T. B. Brantly, L. E. Contois, C. J. Fox, Us 3, 1971, 567, 450
19. T. B. Brantly, L. E. Contois, C. J. Fox, Us 3, 1972, 658, 520
20. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett. 1989, 55, 1489.
21. J. Kido, M. Mimoru, K. Nagai, Science, 1995, 267, 1332
22. Y. Hamada, C. Adachi, T.Tsutsui, S. Sanito, Jpn. J. Appl. Phys. 1992, 31, 1812
23. J. Kido, Jpn. J. Appl. Phys. 1993, part2, 32(7A), L917
24. C. Hosokawa, Us 5, 1992, 142, 343
25. T. Shibata, Jp 6, 1994, 122, 874
26. 周佳興, 國立成功大學化學研究所碩士論文, 2004
27. 史銘翔, 國立成功大學化學研究所碩士論文, 2004
28. 葉昆明, 陳雲, 科學發展, 2005, 385, 63
29. S. H. Lee, T. Nakamura, T. Tsutsui, Org. Lett. 2001, 3, 2005
30. U. Lemmer, S. Heun, R. F. Mahrt, U. Scgerf, M. Hopmeier, U. Siegner,; E. O. Göbel, K. Müllen, H. Bässler, Chem. Phys. Lett, 1995, 240, 373
31. V. N. Bilznyuk, S. A. Carter, J. C. Scott, G. Klärner, R. D. Miller, D. C. Miller, Macromolecule, 1999, 32, 361
32. L. M. Herz, R. T. Philips, Phys. Rev. B. 2000, 61, 13691.
33. H. Z. Tang, M. Fujiki, Z. B. Zhang, K. Torimitsu, M. Motonaga, Chem. Commun. 2001, 23, 2426
34. G. Zeng, W. L. Yu, S. J. Chua, W. Huang, Macromolecules, 2002, 35, 6907
35. S. Panozzo, J. C. Vial, Y. Kervela, O. Stéphan, J. Appl. Phys., 2002, 92, 3495
36. E. J. W. List, R. Guentner, P. S. de Freitas, U. Scherf, Adv. Mater. 2002, 14, 374
37. X. Gong, P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger,S. S. Xiao, Adv. Funct. Mater. 2003, 13, 25
38. S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen, F. Meghdadi, E. J. W. List, G. Leising, J. Am. Chem. Soc. 2001, 123, 946
39. D. Marsitzky, J. Murray, J. C. Scott, K. R. Carter, Chem. Mater. 2001, 13, 4285
40. P. S. de Freitas, U. Scherf, M. Collon, E. J. W. List, e-Polymers, 2002. no. 009
41. D. J. Kim, S. H. Kim, S. H. Jin, D. K. Park, H.N. Cho, T. Zyung, I. Cho, S. k. Choi, Eur. Polym. J. 1999, 35, 227
42. Z. H. Kafafi, Organic Light –Emitting Materials and Devices, 1997
43. T. S. Novokora, N. N. Barashkov, A. Yassar, M. Hmyene, J. P. Ferraris, Synth. Met. 1996, 83, 47
44. M. T. Rogert, R. R. Renshaw, J. Am. Chem. Soc. 1980, 30, 1135
45. W. N. Edwards, U.S. Patent 3, 1965, 179, 614
46. A. E. Endry, U.S. Patent 3, 1965, 179, 630
47. C. E. Sroog; Macromolecular Reviews, 1976, 11, 172
48. S. H. Hsiao, C. P. Yang, J. Polym. Sci. Part A: Polym. Chem. 1990, 28, 1149
49. W. Wrasidlo, J. M. Augl, J. Polym. Sci. Part A: Polym. Chem. 1969, 7, 321
50. N. Yamazaki,M. Matsumoto, F. Higashi, J. Polymer Sci.: Polymer Chem. Ed. 1975, 13, 1373
51. C. P. Yang, G. S. Liou, R. S. Chen, C. Y. Yang, J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 1090
52. S. K. Dolui, D. Pal, S. Maiti, J. Appl. Polym. Sci. 1985, 30, 3867
53. S. Maiti, S. Das, J. Appl. Polym. Sci. 1981, 26, 957
54. S. Maiti, S. Das, Angew Makromol. Chem. 1980, 86, 181
55. D. F. Loncrini, J. Polym. Sci. 1966, 4, 1531
56. J. G. Malvaney, J. Polym. Sci. Part A: Polym. Chem. 1986, 24, 613
57. 王先知, 工業材料雜誌, 2007, 242, 78
58. V. V. Korshak, S. V. Vinoradova, Y. S. Vygodskii, J. Macromol. Sci. Rev. Macromol. Chem. 1974, C11, 45
59. J. H. Lin, C. P. Yang, J. Polym. Sci. Part A: Polym. Chem. 1996, 34, 747
60. 徐武軍,高分子材料導論, 2004
61. 黃美珍, 國立成功大學化學研究所碩士論文, 2007
62. Y. M. Sun, Polymer, 2001, 42, 9495
63. H. E. Kinssinger, Anal. Chem., 1957, 29,1702
64. T.Ozawa, Bull Chem Soc Jpn, 1965, 38, 1881
65. J. H. Chang, T. G. Jang, K. J. Ihn, W. K. Lee, G. S. Sur, J. Appl. Polym. Sci. 2003, 90, 3208
66. C. Popescu, Thermochim. Acta, 1996, 285, 309.
67. C. D. Doyle, J. Appl. Polym. Sci. 1961, 15, 285
68. S. Vyazovkin, J. Comput. Chem. 1997, 18, 393
69. S. Vyazovkin, J. Comput. Chem. 2001, 22, 78
70. S. Vyazovkin, C. A. Wight, Thermochim. Acta, 1999, 340, 53