| 研究生: |
陳建安 Chen, Chien-An |
|---|---|
| 論文名稱: |
(Ni0.5-0.5xZn0.5-0.5xCox)Fe2O4/Epoxy/CNF/CNT複合試片之製作與電磁微波吸收特性之研究 Fabrication of (Ni0.5-0.5xZn0.5-0.5xCox)Fe2O4/Epoxy/CNF/CNT composites and study on the Properties of Microwave Absorption |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 鎳鋅鈷鐵氧體 、煆燒溫度 、莫耳比例 、電磁波吸收材料 |
| 外文關鍵詞: | Ni-Zn-Co ferrite, sintering temperature, mole ratio, microwave absorbing material |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的為研究出中心頻率在5GHz、厚度小於4.5mm、-10dB頻寬達到3GHz、-20dB頻寬達到1GHz的複合吸波材料,主要材料為磁性材料/介電材料/高分子聚合物的複合材料,透過調整(Ni0.5-0.5xZn0.5-0.5xCox)Fe2O4的莫耳比例x、製備時的煆燒溫度,選擇出具最佳磁損耗的粉體,並將粉體與奈米碳纖維(CNF)以及奈米碳管(CNT)製作成複合試片,並調整兩種不同碳材料的摻雜比例,以此找出最佳的摻雜量。結果顯示(Ni0.5-0.5xZn0.5-0.5xCox)Fe2O4/Epoxy的介電損耗相當低,在2~18GHz間介電損耗正切均小於0.1,單獨摻雜鐵氧粉體時主要依靠磁損耗提供吸波能力並且在2~7GHz間具較高的磁損耗正切值,在煆燒溫度1200℃下製備出的(Ni0.45Zn0.45Co0.1)Fe2O4/Epoxy試片在5GHz處有最大的磁損耗正切0.51,推算出的反射損耗為-16.3dB,試片厚度為6.2mm。其次為了增加介電損耗摻入CNF,結果顯示摻入CNF後介電損耗正切值有明顯的提升,未摻雜CNF時介電損耗正切僅有0.05的平均值在摻入CNF後皆可超過0.15,但摻入CNF亦會使得磁損耗正切下降。當CNF摻雜量為0.5wt%的(Ni0.45Zn0.45Co0.1)Fe2O4/Epoxy/CNF複合試片,在中心頻率5GHz時最大反射損耗為-31dB,並達到-10dB頻寬2.6GHz、以及-20dB頻寬0.8GHz、厚度為4.8mm,單獨摻雜0.5wt%的CNT試片在中心頻率5GHz處所能達到的最大反射損耗為-11.7dB,厚度為6mm,對比單獨摻雜0.5wt%的CNF試片效果較差,推測為CNT試片分散性不佳,因此若能做好分散性的處理將有機會改善。在同時摻雜CNT以及CNF的情況下,0.5wt%的CNF以及0.25wt%的CNT複合試片,在中心頻率5GHz處時厚度為5.2mm,最大反射損耗為-25.9dB,達到-20dB的頻寬為0.8GHz達到-10dB的頻寬為4GHz,在-10dB頻寬有所提升但厚度亦增加。綜合在5GHz上的應用,單獨摻雜0.5wt%的CNF所達到的在中心頻率5GHz時最大反射損耗為-31dB,-10dB頻寬2.6GHz以及-20dB頻寬0.8GHz厚度為4.8mm較為接近預設目標。本研究對於(Ni0.45Zn0.45Co0.1)Fe2O4/Epoxy/CNF/以及(Ni0.45Zn0.45Co0.1)Fe2O4/Epoxy/CNF/CNT的元素比例、煆燒溫度、CNF及CNT摻雜比例影響已有提出,將此材料當作基準可以作為設計先進微波吸收材料的參考。
This work first studied the effects of sintering temperature and mole ratio x(=0.1, 0.2, 0.3) on complex permeability and magnetic loss tangent of composite (Ni0.5-0.5xZn0.5-0.5xCox)Fe2O4/Epoxy as microwave absorbing material. The result showed that the maximum magnetic loss tangent of 0.51 at 5 GHz was found for sintering temperature of 1200℃ and x = 0.1. Theoretical computation suggested that -16.3 dB of reflection loss could be obtained for the composite material of thickness of 6.2 mm, backed on a metal plate. Furthermore, carbon nanofiber (CNF) and carbon nanotube (CNT) were added into the composite material to improve dielectric loss tangent. The result showed that the sole addition of 0.5wt%-CNF had the best expectation with the lowest reflection loss of -31dB at 5 GHz and smaller thickness of 4.8 mm.
[1] M. Qin, L. Zhang, and H. Wu, "Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials," Adv Sci (Weinh), vol. 9, no. 10, p. e2105553, Apr 2022, doi: 10.1002/advs.202105553.
[2] A. Bahadur et al., "Morphological and magnetic properties of BaFe 12 O 19 nanoferrite: A promising microwave absorbing material," Ceramics International, vol. 43, no. 9, pp. 7346-7350, 2017, doi: 10.1016/j.ceramint.2017.03.039.
[3] H. Wei, Z. Zhang, G. Hussain, L. Zhou, Q. Li, and K. Ostrikov, "Techniques to enhance magnetic permeability in microwave absorbing materials," Applied Materials Today, vol. 19, 2020, doi: 10.1016/j.apmt.2020.100596.
[4] K. Praveena, K. Sadhana, S. Matteppanavar, and H.-L. Liu, "Effect of sintering temperature on the structural, dielectric and magnetic properties of Ni0.4Zn0.2Mn0.4Fe2O4 potential for radar absorbing," Journal of Magnetism and Magnetic Materials, vol. 423, pp. 343-352, 2017, doi: 6.310.1016/j.jmmm.2016.09.129.
[5] P. Thakur, S. Taneja, D. Chahar, B. Ravelo, and A. Thakur, "Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 530, 2021, doi: 10.1016/j.jmmm.2021.167925.
[6] D.-L. Zhao, Q. Lv, and Z.-M. Shen, "Fabrication and microwave absorbing properties of Ni–Zn spinel ferrites," Journal of Alloys and Compounds, vol. 480, no. 2, pp. 634-638, 2009, doi: 10.1016/j.jallcom.2009.01.130.
[7] J. S. Ghodake, R. C. Kambale, T. J. Shinde, P. K. Maskar, and S. S. Suryavanshi, "Magnetic and microwave absorbing properties of Co 2+ substituted nickel–zinc ferrites with the emphasis on initial permeability studies," Journal of Magnetism and Magnetic Materials, vol. 401, pp. 938-942, 2016, doi: 10.1016/j.jmmm.2015.11.009.
[8] F. Meng et al., "Graphene-based microwave absorbing composites: A review and prospective," Composites Part B: Engineering, vol. 137, pp. 260-277, 2018, doi: 10.1016/j.compositesb.2017.11.023.
[9] L. Liu, Y. Duan, L. Ma, S. Liu, and Z. Yu, "Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black," Applied Surface Science, vol. 257, no. 3, pp. 842-846, 2010, doi: 10.1016/j.apsusc.2010.07.078.
[10] F. Nanni, P. Travaglia, and M. Valentini, "Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites," Composites Science and Technology, vol. 69, no. 3-4, pp. 485-490, 2009, doi: 10.1016/j.compscitech.2008.11.026.
[11] Z. Fan, G. Luo, Z. Zhang, L. Zhou, and F. Wei, "Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites," Materials Science and Engineering: B, vol. 132, no. 1-2, pp. 85-89, 2006, doi: 10.1016/j.mseb.2006.02.045.
[12] I. W. Nam, H. K. Lee, and J. H. Jang, "Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites," Composites Part A: Applied Science and Manufacturing, vol. 42, no. 9, pp. 1110-1118, 2011, doi: 10.1016/j.compositesa.2011.04.016.
[13] L. Mohan, M. Setty, S. Karakkad, and S. T. Krishnan, "Characterization of Carbon-Based Epoxy Nanocomposite Shield for Broadband EMI Shielding Application in X and Ku Bands," IEEE Transactions on Nanotechnology, vol. 20, pp. 61-68, 2021, doi: 10.1109/tnano.2020.3045181.
[14] P.-C. Sung, T.-H. Chiu, and S.-C. Chang, "Microwave curing of carbon nanotube/epoxy adhesives," Composites Science and Technology, vol. 104, pp. 97-103, 2014, doi: 10.1016/j.compscitech.2014.09.003.
[15] X. Qi et al., "Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties," Sci Rep, vol. 6, p. 28310, Jun 21 2016, doi: 10.1038/srep28310.
[16] P. Liu, Z. Yao, and J. Zhou, "Controllable synthesis and enhanced microwave absorption properties of silane-modified Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites covered with reduced graphene oxide," RSC Advances, vol. 5, no. 114, pp. 93739-93748, 2015, doi: 10.1039/c5ra18668d.
[17] V. K. Chakradhary, S. Juneja, and M. Jaleel Akhtar, "Correlation between EMI shielding and reflection loss mechanism for carbon nanofiber/epoxy nanocomposite," Materials Today Communications, vol. 25, 2020, doi: 10.1016/j.mtcomm.2020.101386.
[18] N. Poudyal et al., "Self-nanoscaling in FeCo alloys prepared via severe plastic deformation," Journal of Alloys and Compounds, vol. 521, pp. 55-59, 2012, doi: 10.1016/j.jallcom.2012.01.026.
[19] M. Dalal, A. Das, D. Das, R. S. Ningthoujam, and P. K. Chakrabarti, "Studies of magnetic, Mössbauer spectroscopy, microwave absorption and hyperthermia behavior of Ni-Zn-Co-ferrite nanoparticles encapsulated in multi-walled carbon nanotubes," Journal of Magnetism and Magnetic Materials, vol. 460, pp. 12-27, 2018, doi: 10.1016/j.jmmm.2018.03.048.
[20] A. V. Knyazev, I. Zakharchuk, E. Lähderanta, K. V. Baidakov, S. S. Knyazeva, and I. V. Ladenkov, "Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites," Journal of Magnetism and Magnetic Materials, vol. 435, pp. 9-14, 2017, doi: 10.1016/j.jmmm.2017.03.074.
[21] P. Liu et al., "Microwave absorption properties of double-layer absorbers based on Co0.2Ni0.4Zn0.4Fe2O4 ferrite and reduced graphene oxide composites," Journal of Alloys and Compounds, vol. 701, pp. 841-849, 2017, doi: 10.1016/j.jallcom.2017.01.202.
[22] S. G. Gawas, S. S. Meena, S. M. Yusuf, and V. M. S. Verenkar, "Anisotropy and domain state dependent enhancement of single domain ferrimagnetism in cobalt substituted Ni–Zn ferrites," New Journal of Chemistry, vol. 40, no. 11, pp. 9275-9284, 2016, doi: 10.1039/c6nj02121b.
[23] S. Bawa Waje, M. Hashim, and I. Ismail, "Effects of sintering temperature on grain growth and the complex permeability of Co0.2Ni0.3Zn0.5Fe2O4 material prepared using mechanically alloyed nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 323, no. 11, pp. 1433-1439, 2011, doi: 10.1016/j.jmmm.2010.12.032.
[24] Nelly M. Rodriguez, Myung-Soo Kim, and R. T. K. Baker., "Carbon Nanofibers: A Unique Catalyst Support Medium," The Journal of physical chemistry., vol. 98(50), pp. 13108-13111, 1994, doi: 10.1021/j100101a003‚.
[25] Nelly M. Rodriguez, Alan Chambers, and R. T. K. Baker., "Catalytic Engineering of Carbon Nanostructures," vol. 11, pp. 3862-3866, 1995, doi: 10.1021/la00010a042‚.
[26] M. H. Al-Saleh and U. Sundararaj, "A review of vapor grown carbon nanofiber/polymer conductive composites," Carbon, vol. 47, no. 1, pp. 2-22, 2009, doi: 10.1016/j.carbon.2008.09.039.
[27] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, 56-58, 1991.
[28] W. Hoenlein et al., "Carbon Nanotube Applications in Microelectronics," IEEE Transactions on Components and Packaging Technologies, vol. 27, no. 4, pp. 629-634, 2004, doi: 10.1109/tcapt.2004.838876.
[29] A. Saib et al., "Carbon nanotube composites for broadband microwave absorbing materials," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 6, pp. 2745-2754, 2006, doi: 10.1109/tmtt.2006.874889.
[30] K.-Y. Park, J.-H. Han, S.-B. Lee, J.-B. Kim, J.-W. Yi, and S.-K. Lee, "Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles," Composites Science and Technology, vol. 69, no. 7-8, pp. 1271-1278, 2009, doi: 10.1016/j.compscitech.2009.02.033.
[31] A. H. n, SaifulAmriMazlan, and KamyarShameli, "A comparative study of different concentrations of pure Zn powder effects on synthesis, structure, magnetic and microwave-absorbing properties in mechanically-alloyed Ni–Zn ferrite," Physicsand Chemistry of Solids, vol. 96-97, pp. 49-59, 2016, doi: 10.1016/j.jpcs.2016.05.001.
[32] J.-E. Yoo and Y.-M. Kang, "Electromagnetic wave absorbing properties of Ni-Zn ferrite powder–epoxy composites in GHz range," Journal of Magnetism and Magnetic Materials, vol. 513, 2020, doi: 10.1016/j.jmmm.2020.167075.
[33] S. Foner, "Vibrating Sample Magnetometer," Review of Scientific Instruments, vol. 27, no. 7, pp. 548-548, 1956, doi: 10.1063/1.1715636.
[34] A. Nicolson and G. Ross, "Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques," vol. 19, pp. 377-382, 1970.