| 研究生: |
張宗偉 Chang, Tsung-Wei |
|---|---|
| 論文名稱: |
電化學沉積法製備銅銦硒太陽能電池研究 Studies on CuInSe2 thin-film solar cell by using electrochemical deposition |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 電化學 、二硒化銅鎵銦 、電化學蝕刻 、太陽能電池 |
| 外文關鍵詞: | Electrodeposition, CuInGaSe2, Electrochemical-etch, Solar cell |
| 相關次數: | 點閱:116 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用電化學分析方法來研究銅銦鎵硒薄膜太陽能電池吸收層的電沈積,藉此研究電沈積的機制來改善製程條件。由於電沈積優異高生產量與低成本,使其很有潛力成為成長金屬與半導體薄膜的方法,由於適合大面積生產以及無真空環境的需求讓可以實現量產,但是要將其應用在先進的薄膜製程上有許多挑戰與困難,如薄膜均勻性的改善、製程的穩定度、薄膜的品質與結晶性。然而電鍍液的組成對此步驟的效率有很大的影響,本文中利用各種電化學分析如循環伏安法、線性掃瞄伏安法作為主要的研究工具來探討電鍍溶液的成分。
而電沈積是沈積複和材質的主要技術,他相對有高真空需求的技術來說有極佳的生產優勢,因此電沈積被應用於發展太陽能光電,二硒化銅鎵銦(CIGS)在薄膜太陽應用上頗受矚目,單步驟電沈積是生產CIGS薄膜很有潛力的技術,但是多元素的電鍍液組成不易控制,電位的影響限制了各成分的濃度比例,線性掃瞄伏安法是用來研究銅銦硒競爭以及添加劑效用的重要方法,在傳統的方式,溶液濃度被相對的電壓控制來達到特定原子比例的CIGS薄膜,而光輔助電沈積提供一種調整CIGS薄膜原子比例的方式且可進一步提升薄膜品質,並且導入以以及加熱溶液等方式來改善CIGS薄膜均勻度與結晶性;後製程更使用了高壓退火方式增加薄膜結晶性,最後使用電化學蝕刻改善CIGS薄膜表面成分,進而產生等有序空位化合物層改善CIGS薄膜太陽能電池光電轉換效率;開路電壓(Voc)可由69 mV提升至374 mV,填充因子可由26.3 %提升至55 %,光電轉換效率可由0.49 %提升至7.12 %;並套用在濺鍍製程之CIGS薄膜太陽能電池上也可提升光電轉換效率,開路電壓(Voc)可由650 mV提升至693 mV,填充因子可由58 %提升至65 %,光電轉換效率可由11.4 %提升至13.8 %
In this thesis, electrochemical analyses were used to investigate the mechanism of electrodeposition process of thin film solar cell of Cu, In, Ga and Se compounds. Electrodeposition is a promising method for forming metal and semiconductor thin films due to its excellent gap-filling capacity and high throughput. Low cost mass production can be achieved because of large area plating under non-vacuum circumstances. However, there are several challenges of crystallinity and smooth films for applying electrodeposition to advanced thin film production. Electrochemical analyses, such as cyclic-voltammetry stripping (CVS) and linear scan voltammetry (LSV), are the major tools to investigate the composition of plating electrolytes.
Electrodeposition is a major technology to deposit complex metallic layers. It is scalable at low cost as compared to technologies requiring high vacuum. Therefore, electrodeposition has been developed for the applications of photovoltaics. CuInGaSe2 (CIGS) has been spotlighted for its applications in thin film solar cells. Single step electrodeposition is the most promising electrochemical technique to produce the CIGS film for solar cell applications. However, the composition of the CIGS film is hard to control in a ternary solution. The variation of electrolyte concentrations is restricted for single potential electrodeposition. LSV is an important method to investigate the influences of additives and the competitions of the Cu/In/Ga/Se. In the conventional deposition, the concentrations of electrolytes are restricted due to the correspondent plating potential of each ion to achieve a specific atomic ratio of the CIGS film. The electrodeposition methods of heating solution and substrate solution and photo-assistedwas used in the CIGS deposition to
improve the film quality and adjust the atomic ratio of the CIGS film, and we applied the pressurized annealed methods to made crystallinity CIGS films; at last electrochemical etching changed the surface atomic ratio of the CIGS film toincreasethe conversion efficiency of CIGS solar cells by made OVC(order vacancy compound) layer. The CIGS solar cells though the improved process by this work, the Voc was improved from 69 mV to 374 mV, the fill factor from 26.3 % to 55 % and the conversion efficiency from 0.49 % to 7.12 %.The solar cell of sputter CIGS films after electrochemical, the Voc was improved from 650 mV to 693 mV, the fill factor from 58 % to 65 % and the conversion efficiency from 11.4 % to 13.8 %.
1 F Adurodija, J Song, SK Kim, KH Kang, KH Yoon, SH Kwon, BT Ahn, and SD Kim, 'Cuinse~ 2 Thin Films Prepared from High-Vapor Solenization of Co-Sputtered Cu-in Precursor Layers', JOURNAL-KOREAN PHYSICAL SOCIETY, 32, 87-92, (1998).
2 FO Adurodija, J Song, SD Kim, SH Kwon, SK Kim, KH Yoon, and BT Ahn, 'Growth of Cuinse< Sub> 2</Sub> Thin Films by High Vapour Se Treatment of Co-Sputtered Cu-in Alloy in a Graphite Container', Thin Solid Films, 338, 13-19, (1999).
3 AAS Akl, A Ashour, AA Ramadan, and K Abd El-Hady, 'Structural Study of Flash Evaporated Cuinse< Sub> 2</Sub> Thin Films', Vacuum, 61, 75-84, (2001).
4 CP Andrieux, JM Saveant, and RW Murray, 'Molecular Design of Electrode Surfaces', Wiley & Sons: New York, 25, 10-7, (1992).
5 A Ashida, Y Hachiuma, N Yamamoto, T Ito, and Y Cho, 'Cuinse 2 Thin Films Prepared by Quasi-Flash Evaporation of in 2 Se 3 and Cu 2 Se', Journal of materials science letters, 13, 1181-84, (1994).
6 M Benaicha, N Benouattas, C Benazzouz, and L Ouahab, 'Effect of Bath Temperature and Annealing on the Formation of Cuinse< Sub> 2</Sub>', Solar Energy Materials and Solar Cells, 93, 262-66, (2009).
7 B Berenguier, and HJ Lewerenz, 'Efficient Solar Energy Conversion with Electrochemically Conditioned Cuins< Sub> 2</Sub> Thin Film Absorber Layers', Electrochemistry communications, 8, 165-69, (2006).
8 B. Berenguier, and H. J. Lewerenz, 'Efficient Solar Energy Conversion with Electrochemically Conditioned Cuins2 Thin Film Absorber Layers', Electrochemistry Communications, 8, 165-69, (2006).
9 RN Bhattacharya, JF Hiltner, W Batchelor, MA Contreras, RN Noufi, and JR Sites, '15.4% Cuin< Sub> 1− X</Sub> Ga< Sub> X</Sub> Se< Sub> 2</Sub>-Based Photovoltaic Cells from Solution-Based Precursor Films', Thin Solid Films, 361, 396-99, (2000).
10 David Keith Bowen, and Brian K Tanner, High Resolution X-Ray Diffractometry and Topography. (CRC Press, 2005)
11 P. Bratin, Proceeding of AES Analytical Meeting Symposium, Chicago, (1985).
12 B. Canava, J. F. Guillemoles, J. Vigneron, D. Lincot, and A. Etcheberry, 'Chemical Elaboration of Well Defined Cu(in,Ga)Se2 Surfaces after Aqueous Oxidation Etching', Journal of Physics and Chemistry of Solids, 64, 1791-96, (2003).
13 Elisabeth Chassaing, Omar Ramdani, Pierre‐Philippe Grand, Jean‐François Guillemoles, and Daniel Lincot, 'New Insights in the Electrodeposition Mechanism of Cuinse2 Thin Films for Solar Cell Applications', physica status solidi (c), 5, 3445-48, (2008).
14 N. B. Chaure, A. P. Samantilleke, R. P. Burton, J. Young, and I. M. Dharmadasa, 'Electrodeposition of P+, P, I, N and N+-Type Copper Indium Gallium Diselenide for Development of Multilayer Thin Film Solar Cells', Thin Solid Films, 472, 212-16, (2005).
15 TL Chu, Shirley S Chu, SC Lin, and J Yue, 'Large Grain Copper Indium Diselenide Films', Journal of the Electrochemical Society, 131, 2182-85, (1984).
16 Miguel A Contreras, B Egaas, P Dippo, J Webb, J Granata, K Ramanathan, S Asher, A Swartzlander, and R Noufi, 'On the Role of Na and Modifications to Cu (in, Ga) Se 2 Absorber Materials Using Thin-Mf (M= Na, K, Cs) Precursor Layers [Solar Cells]', in Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE (IEEE, 1997), pp. 359-62.
17 'Cyclic Voltammetry', <http://en.wikipedia.org/wiki/Cyclic_voltammetry>.
18 FB Dejene, 'Material and Device Properties of Cu (in, Ga) Se< Sub> 2</Sub> Absorber Films Prepared by Thermal Reaction of Inse/Cu/Gase Alloys to Elemental Se Vapor', Current Applied Physics, 10, 36-40, (2010).
19 Hampton K Dixon, 'The Detail Design of a Wooden, Solar-Electric Launch for the Carmans River Maritime Center' (Webb Institute).
20 Patrick Echlin, Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis. (Springer, 2009)
21 John R Ferraro, Introductory Raman Spectroscopy. (Academic press, 2003)
22 JCW Folmer, John A Turner, R Noufi, and David Cohen, 'Structural and Solar Conversion Characteristics of the (Cu2se) X (In2se3) 1− X System', Journal of The Electrochemical Society, 132, 1319-27, (1985).
23 DJ Gardiner, and PR Graves, 'Practical Raman Spectroscopy, 1989', (Springer-Verlag).
24 Markas AT Gilmartin, and John P Hart, 'Sensing with Chemically and Biologically Modified Carbon Electrodes. A Review', Analyst, 120, 1029-45, (1995).
25 Adolf Goetzberger, and Christopher Hebling, 'Photovoltaic Materials, Past, Present, Future', Solar energy materials and solar cells, 62, 1-19, (2000).
26 DK Goosser, 'Cyclic Voltammetry, Simulation and Analysis of Reaction Mecheisms', (VCH Publishers, Inc., NY, 1993).
27 Karin Granath, Marika Bodegård, and Lars Stolt, 'The Effect of Naf on Cu (in, Ga) Se< Sub> 2</Sub> Thin Film Solar Cells', Solar energy materials and solar cells, 60, 279-93, (2000).
28 L Groenendaal, Gianni Zotti, P‐H Aubert, Shane M Waybright, and John R Reynolds, 'Electrochemistry of Poly (3, 4‐Alkylenedioxythiophene) Derivatives', Advanced Materials, 15, 855-79, (2003).
29 Subhendu Guha, and Stanford R Ovshinsky, 'P and N-Type Microcrystalline Semiconductor Alloy Material Including Band Gap Widening Elements, Devices Utilizing Same', (Google Patents, 1988).
30 Jean François Guillemoles, Pierre Cowache, Sylvie Massaccesi, Laurent Thouin, Sylvie Sanchez, Daniel Lincot, and Jacques Vedel, 'Solar Cells with Improved Efficiency Based on Electrodeposited Copper Indium Diselenide Thin Films', Advanced Materials, 6, 379-81, (1994).
31 G Hanna, J Mattheis, V Laptev, Y Yamamoto, U Rau, and HW Schock, 'Influence of the Selenium Flux on the Growth of Cu (in, Ga) Se< Sub> 2</Sub> Thin Films', Thin Solid Films, 431, 31-36, (2003).
32 Kozo Hoshino, Fuyuki Shimojo, and Taiji Nishida, 'The Photo-Induced Structural Change in a Se Chain and a Se 8 Ring: An Abinitio Molecular-Dynamics Simulation', Journal of the Physical Society of Japan, 68, 1907-11, (1999).
33 Yu-Jen Hsiao, Ting-Jen Hsueh, Jia-Min Shieh, Yu-Ming Yeh, Chien-Chih Wang, Bau-Tong Dai, Wen-Wei Hsu, Jing-Yi Lin, Chang-Hong Shen, and CW Liu, 'Bifacial Cigs (11% Efficiency)/Si Solar Cells by Cd-Free and Sodium-Free Green Process Integrated with Cigs Tfts', in Electron Devices Meeting (IEDM), 2011 IEEE International (IEEE, 2011), pp. 36.5. 1-36.5. 4.
34 Shao-Yu Hu, Wen-Hsi Lee, Shih-Chieh Chang, Yi-Lung Cheng, and Ying-Lang Wang, 'Pulsed Electrodeposition of Cuinse2 Thin Films onto Mo-Glass Substrates', Journal of The Electrochemical Society, 158, B557-B61, (2011).
35 C. J. Huang, T. H. Meen, M. Y. Lai, and W. R. Chen, 'Formation of Cuinse2 Thin Films on Flexible Substrates by Electrodeposition (Ed) Technique', Solar Energy Materials and Solar Cells, 82, 553-65, (2004).
36 Chi-Cheng Hung, Wen-Hsi Lee, Shao-Yu Hu, Shih-Chieh Chang, Kei-Wei Chen, and Ying-Lang Wang, 'Effect of Bis-(3-Sodiumsulfopropyl Disulfide) Byproducts on Copper Defects after Chemical Mechanical Polishing', Journal of Vacuum Science & Technology B, 26, 255-59, (2008).
37 Takeshi Innami, and Sadao Adachi, '<Title>Structural and Optical Properties of Photocrystallized Se Films</Title>', Physical Review B, 60, 8284-89, (1999).
38 Motohiko Ishii, Kenji Shibata, and Hiroshi Nozaki, 'Anion Distributions and Phase Transitions in Cus1-Xsex(X = 0-1) Studied by Raman Spectroscopy', Journal of Solid State Chemistry, 105, 504-11, (1993).
39 ———, 'Anion Distributions and Phase Transitions in Cus< Sub> 1-X</Sub> Se< Sub> X</Sub>(< I> X</I>= 0-1) Studied by Raman Spectroscopy', Journal of Solid State Chemistry, 105, 504-11, (1993).
40 Victor Izquierdo-Roca, Alejandro Pérez-Rodríguez, Alberto Romano-Rodríguez, JR Morante, Jacobo Álvarez-García, Lorenzo Calvo-Barrio, V Bermudez, PP Grand, O Ramdani, and L Parissi, 'Raman Microprobe Characterization of Electrodeposited S-Rich Cuin (S, Se) 2 for Photovoltaic Applications: Microstructural Analysis', Journal of applied physics, 101, 103517, (2007).
41 Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann, and Michael Powalla, 'New World Record Efficiency for Cu (in, Ga) Se2 Thin‐Film Solar Cells Beyond 20%', Progress in Photovoltaics: Research and Applications, 19, 894-97, (2011).
42 Sunghun Jung, SeJin Ahn, Jae Ho Yun, Jihye Gwak, Donghwan Kim, and Kyunghoon Yoon, 'Effects of Ga Contents on Properties of Cigs Thin Films and Solar Cells Fabricated by Co-Evaporation Technique', Current Applied Physics, 10, 990-96, (2010).
43 M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg, and A. N. Tiwari, 'Cis and Cigs Layers from Selenized Nanoparticle Precursors', Thin Solid Films, 431–432, 58-62, (2003).
44 Kimio Kanda, 'Energy Dispersive X-Ray Spectrometer', (Google Patents, 1991).
45 F Kang, JP Ao, GZ Sun, Q He, and Y Sun, 'Growth and Characterization of Cuinse< Sub> 2</Sub> Thin Films Via One-Step Electrodeposition from a Lactic Acid/Sodium Lactate Buffer System', Materials Chemistry and Physics, 115, 516-20, (2009).
46 L Kaupmees, M Altosaar, O Volubujeva, and E Mellikov, 'Study of Composition Reproducibility of Electrochemically Co-Deposited Cuinse< Sub> 2</Sub> Films onto Ito', Thin Solid Films, 515, 5891-94, (2007).
47 Marianna Kemell, Mikko Ritala, and Markku Leskelä, 'Thin Film Deposition Methods for Cuinse 2 Solar Cells', Critical Reviews in Solid State and Materials Sciences, 30, 1-31, (2005).
48 Sang Deok Kim, Hyeong Joon Kim, Frederick Ojo Adurodija, Kyeong Hoon Yoon, and Jinsoo Song, 'Characteristics of Cuinse~ 2 Thin Films Grown by the Selenization Method', JOURNAL-KOREAN PHYSICAL SOCIETY, 35, S403-S05, (1999).
49 Jo Klaer, Ilka Luck, Axel Boden, Reiner Klenk, Isabel Gavilanes Perez, and Roland Scheer, 'Mini-Modules from a Cuins< Sub> 2</Sub> Baseline Process', Thin Solid Films, 431, 534-37, (2003).
50 R Klenk, J Klaer, R Scheer, M Ch Lux-Steiner, I Luck, N Meyer, and U Rühle, 'Solar Cells Based on Cuins< Sub> 2</Sub>—an Overview', Thin Solid Films, 480, 509-14, (2005).
51 Naoki Kohara, Takayuki Negami, Mikihiko Nishitani, and Takahiro Wada, 'Preparation of Device-Quality Cu (in, Ga) Se2 Thin Films Deposited by Coevaporation with Composition Monitor', Japanese journal of applied physics, 34, L1141, (1995).
52 J. Kois, S. Bereznev, O. Volobujeva, and E. Mellikov, 'Electrochemical Etching of Copper Indium Diselenide Surface', Thin Solid Films, 515, 5871-75, (2007).
53 Martin Krejci, 'Preparation and Characterization of Heteroepitaxial Cuinxsey Layers and Cu (in, Ga) Se2 Substrate Solar Cells', (1999).
54 Se Han Kwon, Sung Chan Park, Byung Tae Ahn, Kyung Hoon Yoon, and Jinsoo Song, 'Effect of Cuin< Sub> 3</Sub> Se< Sub> 5</Sub> Layer Thickness on Cuinse< Sub> 2</Sub> Thin Films and Devices', Solar energy, 64, 55-60, (1998).
55 Eunjoo Lee, Jin Woo Cho, Jaehoon Kim, Jaeho Yun, Jong Hak Kim, and Byoung Koun Min, 'Synthesis of Cigs Powders: Transition from Binary to Quaternary Crystalline Structure', Journal of Alloys and Compounds, 506, 969-72, (2010).
56 H-J Lewerenz, and H Jungblut, 'Dünnschichtsolarzellen', in Photovoltaik (Springer, 1995), pp. 155-233.
57 Daniel Lincot, 'Electrodeposition of Semiconductors', Thin Solid Films, 487, 40-48, (2005).
58 Daniel Lincot, Jean-François Guillemoles, S Taunier, D Guimard, J Sicx-Kurdi, A Chaumont, O Roussel, O Ramdani, C Hubert, and JP Fauvarque, 'Chalcopyrite Thin Film Solar Cells by Electrodeposition', Solar Energy, 77, 725-37, (2004).
59 Antonio Luque, and Steven Hegedus, Handbook of Photovoltaic Science and Engineering. (John Wiley & Sons, 2011)
60 Takashi Minemoto, Yasuhiro Hashimoto, Wahid Shams-Kolahi, Takuya Satoh, Takayuki Negami, Hideyuki Takakura, and Yoshihiro Hamakawa, 'Control of Conduction Band Offset in Wide-Gap Cu (in, Ga) Se< Sub> 2</Sub> Solar Cells', Solar energy materials and solar cells, 75, 121-26, (2003).
61 Takashi Minemoto, Yoichi Wakisaka, and Hideyuki Takakura, 'Grain Boundary Character Distribution on the Surface of Cu (in, Ga) Se2 Thin Film', Japanese Journal of Applied Physics, 50, 1203, (2011).
62 AH Moharram, MM Hafiz, and A Salem, 'Electrical Properties and Structural Changes of Thermally Co-Evaporated Cuinse Films', Applied Surface Science, 172, 61-67, (2001).
63 Tokio Nakada, and Sho Shirakata, 'Impacts of Pulsed-Laser Assisted Deposition on Cigs Thin Films and Solar Cells', Solar Energy Materials and Solar Cells, 95, 1463-70, (2011).
64 Richard Selindh Nicholson, and Irving Shain, 'Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems', Analytical Chemistry, 36, 706-23, (1964).
65 M. Ohishi, H. Saito, H. Okano, and K. Ohmori, 'Photo-Assisted Mbe Growth of Znse Crystals', Journal of Crystal Growth, 95, 538-42, (1989).
66 MCF Oliveira, M Azevedo, and A Cunha, 'A Voltammetric Study of the Electrodeposition of Cuinse< Sub> 2</Sub> in a Citrate Electrolyte', Thin Solid Films, 405, 129-34, (2002).
67 G. Chalyt P. Bratin, A. Kogan, M. Pavlov, and J. Perpich, 'Control of Damascene Copper Processes by Cyclic Voltammetric Stripping', Semiconductor Fabtech, 12th Edition, (2000).
68 Matthew G Panthani, Vahid Akhavan, Brian Goodfellow, Johanna P Schmidtke, Lawrence Dunn, Ananth Dodabalapur, Paul F Barbara, and Brian A Korgel, 'Synthesis of Cuins2, Cuinse2, and Cu (in X Ga1-X) Se2 (Cigs) Nanocrystal “Inks” for Printable Photovoltaics', Journal of the American Chemical Society, 130, 16770-77, (2008).
69 Jong Won Park, Young Woo Choi, Eunjoo Lee, Oh Shim Joo, Sungho Yoon, and Byoung Koun Min, 'Synthesis of Cigs Absorber Layers Via a Paste Coating', Journal of Crystal Growth, 311, 2621-25, (2009).
70 Sung Chan Park, Doo Youl Lee, Byung Tae Ahn, Kyung Hoon Yoon, and Jinsoo Song, 'Fabrication of Cuinse< Sub> 2</Sub> Films and Solar Cells by the Sequential Evaporation of in< Sub> 2</Sub> Se< Sub> 3</Sub> and Cu< Sub> 2</Sub> Se Binary Compounds', Solar energy materials and solar cells, 69, 99-105, (2001).
71 Antonio Parretta, Maria Luisa Addonizio, Antonio Agati, Michele Pellegrino, Luigi Quercia, Francesco Cardellini, J Kessler, and HW Schock, 'Influence of Morphology and Structure of Cu/in Alloys on the Properties of Cuinse2', Japanese Journal of Applied Physics, 32, 80, (1993).
72 M. Powalla, G. Voorwinden, D. Hariskos, P. Jackson, and R. Kniese, 'Highly Efficient Cis Solar Cells and Modules Made by the Co-Evaporation Process', Thin Solid Films, 517, 2111-14, (2009).
73 V Probst, F Karg, J Rimmasch, W Riedl, W Stetter, H Harms, and O Eibl, 'Advanced Stacked Elemental Layer Process for Cu (Inga) Se2 Thin Film Photovoltaic Devices', in MRS Proceedings (Cambridge Univ Press, 1996), p. 165.
74 C. Ogden R. Haak, and D. M. Tench,, Plating & Surface Finishing, 68, ( 1981).
75 Kannan Ramanathan, Miguel A Contreras, Craig L Perkins, Sally Asher, Falah S Hasoon, James Keane, David Young, Manuel Romero, Wyatt Metzger, and Rommel Noufi, 'Properties of 19.2% Efficiency Zno/Cds/Cuingase2 Thin‐Film Solar Cells', Progress in Photovoltaics: Research and Applications, 11, 225-30, (2003).
76 O Ramdani, Ji F Guillemoles, D Lincot, PP Grand, E Chassaing, O Kerrec, and E Rzepka, 'One-Step Electrodeposited Cuinse< Sub> 2</Sub> Thin Films Studied by Raman Spectroscopy', Thin solid films, 515, 5909-12, (2007).
77 O. Ramdani, J. F. Guillemoles, D. Lincot, P. P. Grand, E. Chassaing, O. Kerrec, and E. Rzepka, 'One-Step Electrodeposited Cuinse2 Thin Films Studied by Raman Spectroscopy', Thin Solid Films, 515, 5909-12, (2007).
78 N Rega, S Siebentritt, IE Beckers, J Beckmann, J Albert, and M Lux-Steiner, 'Defect Spectra in Epitaxial Cuinse< Sub> 2</Sub> Grown by Movpe', Thin Solid Films, 431, 186-89, (2003).
79 D Rudmann, G Bilger, M Kaelin, F-J Haug, H Zogg, and AN Tiwari, 'Effects of Naf Coevaporation on Structural Properties of Cu (in, Ga) Se< Sub> 2</Sub> Thin Films', Thin Solid Films, 431, 37-40, (2003).
80 Mama Zouad Sardi, and Jacques Vedel, 'Anodic Oxidation of Copper Indium Diselenide Thin Films', Thin solid films, 204, 185-91, (1991).
81 JH Schön, V Alberts, and E Bucher, 'Structural and Optical Characterization of Polycrystalline Cuinse< Sub> 2</Sub>', Thin Solid Films, 301, 115-21, (1997).
82 Mordechay Schlesinger, and Milan Paunovic, Modern Electroplating. Vol. 55. (John Wiley & Sons, 2011)
83 C Sene, B Ndiaye, M Dieng, B Mbow, and H Nguyen Cong, 'Cuin (Se, S) 2 Based Photovoltaic Cells from One-Step Electrodeposition', International Journal of Physical Sciences, 4, 562-70, (2009).
84 Fuyuki Shimojo, Kozo Hoshino, and Y Zempo, 'Photo-Induced Bond Breaking in the Ring: An Ab Initio Molecular-Dynamics Simulation', Journal of Physics: Condensed Matter, 10, L177, (1998).
85 Daisuke Shindo, and Tetsuo Oikawa, 'Energy Dispersive X-Ray Spectroscopy', in Analytical Electron Microscopy for Materials Science (Springer, 2002), pp. 81-102.
86 Kai Siemer, Jo Klaer, Ilka Luck, Jürgen Bruns, Reiner Klenk, and Dieter Bräunig, 'Efficient Cuins2 Solar Cells from a Rapid Thermal Process (Rtp)', Solar Energy Materials and Solar Cells, 67, 159-66, (2001).
87 Kehar Singh, and Rashid Tanveer, 'Photoelectrochemical and Impedance Spectral Studies on Electrodeposited (Cdga) Se Films', Solar energy materials and solar cells, 36, 409-20, (1995).
88 U Störkel, M Aggour, CP Murrell, and HJ Lewerenz, 'Electrochemical Treatment of Cuins< Sub> 2</Sub>', Thin solid films, 387, 182-84, (2001).
89 Billy J Stanbery, 'Copper Indium Selenides and Related Materials for Photovoltaic Devices', Critical reviews in solid state and materials sciences, 27, 73-117, (2002).
90 R Takei, H Tanino, S Chichibu, and H Nakanishi, 'Depth Profiles of Spatially‐Resolved Raman Spectra of a Cuinse2‐Based Thin‐Film Solar Cell', Journal of applied physics, 79, 2793-95, (1996).
91 H. Tanino, T. Maeda, H. Fujikake, H. Nakanishi, S. Endo, and T. Irie, '<Title>Raman Spectra of <Formula><M:Math><M:Mrow><M:Msub><M:Mrow><M:Mi Mathvariant="Normal">Cuinse</M:Mi></M:Mrow><M:Mrow><M:Mn>2</M:Mn></M:Mrow></M:Msub></M:Mrow></M:Math></Formula></Title>', Physical Review B, 45, 13323-30, (1992).
92 S Taunier, J Sicx-Kurdi, PP Grand, A Chomont, O Ramdani, L Parissi, P Panheleux, N Naghavi, C Hubert, and M Ben-Farah, 'Cu (in, Ga)(S, Se)< Sub> 2</Sub> Solar Cells and Modules by Electrodeposition', Thin Solid Films, 480, 526-31, (2005).
93 Bae-Heng Tseng, Song-Bin Lin, Gin-Learn Gu, and Hwai-Zeng Hsu, 'Interface of Cuin1− Xgaxse2gaas Heterostructure', Applied surface science, 92, 412-16, (1996).
94 Bae-Heng Tseng, Song-Bin Lin, Ker-Chang Hsieh, and Huey-Liang Hwang, 'Stoichiometric Control of Cuinse< Sub> 2</Sub> Thin Films Using a Molecular Beam Epitaxy Technique', Journal of crystal growth, 150, 1206-10, (1995).
95 Bertram Eugene Warren, X-Ray Diffraction. (Courier Dover Publications, 1969)
96 Su-Huai Wei, SB Zhang, and Alex Zunger, 'Effects of Ga Addition to Cuinse 2 on Its Electronic, Structural, and Defect Properties', Applied physics letters, 72, 3199-201, (1998).
97 T Wilhelm, B Berenguier, M Aggour, K Skorupska, M Kanis, M Winkelnkemper, J Klaer, C Kelch, and H-J Lewerenz, '8% Efficient Cuins< Sub> 2</Sub> Solar Cells by Electrochemically Removed Cu–S Phases', Thin Solid Films, 480, 24-28, (2005).
98 Wolfram Witte, Robert Kniese, and Michael Powalla, 'Raman Investigations of Cu (in, Ga) Se< Sub> 2</Sub> Thin Films with Various Copper Contents', Thin Solid Films, 517, 867-69, (2008).
99 Xuanzhi Wu, 'High-Efficiency Polycrystalline Cdte Thin-Film Solar Cells', Solar energy, 77, 803-14, (2004).
100 Satoshi Yamanaka, Makoto Konagai, and Kiyoshi Takahashi, 'Characterization of Copper Indium Diselenide Thin Films by Raman Scattering Spectroscopy for Solar Cell Applications', Japanese Journal of Applied Physics, 28, L1337, (1989).
101 Zhenhao Zhang, Xiaochen Tang, Uli Lemmer, Wolfram Witte, Oliver Kiowski, Michael Powalla, and Hendrik Hölscher, 'Analysis of Untreated Cross Sections of Cu (in, Ga) Se2 Thin-Film Solar Cells with Varying Ga Content Using Kelvin Probe Force Microscopy', Applied Physics Letters, 99, 042111, (2011).
102 Xiao Long Zhu, Yao Ming Wang, Ai Min Li, Lei Zhang, and Fu Qiang Huang, 'The Effect of N2 Gas Pressure During the Rapid Thermal Process on the Structural and Morphological Properties of Cigs Films', Advanced Materials Research, 463, 614-17, (2012).
103 S Zweigart, SM Sun, G Bilger, and HW Schock, 'Cuinse< Sub> 2</Sub> Film Growth Using Precursors Deposited at Low Temperature', Solar energy materials and solar cells, 41, 219-29, (1996).
104 胡啟章, '電化學原理與方法', (五南圖書出版股份有限公司, 2002).
105 陳珮伶, '利用熱處理探討銅銦鎵硒薄膜太陽能電池硫化鎘緩衝層性質之研究', 元智大學光電工程學系學位論文, 1-71, (2011).