簡易檢索 / 詳目顯示

研究生: 劉家維
Liu, Chia-Wei
論文名稱: 一個應用於心音感測器之具有八倍被動增益和極點優化之一階雜訊整形逐漸逼近式類比至數位轉換器
A First-Order Noise Shaping Successive-Approximation Register ADC with 8× Passive Gain and Pole Optimization for Heart Sound Sensor Application
指導教授: 李順裕
Lee, Shuenn-Yuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 104
中文關鍵詞: 雜訊整形逐漸趨近式類比數位轉換器電容堆疊多輸入比較器心音感測器
外文關鍵詞: Successive approximation register ADC (SAR ADC), noise-shaping, capacitor stacking, multi-input comparator
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一款應用於心音生理訊號感測晶片的雜訊整形逐次逼近型類比數位轉換器(Noise-Shaping SAR ADC)。由於心音感測器需要擷取生理訊號並將其轉換為高準確度與高解析度的數位訊號,為適用於穿戴式裝置,系統同時必須具備低功耗特性,以確保臨床診斷與健康監測的可靠性。三角積分調變類比至數位轉換器(Sigma-Delta ADC)應用於傳統心音感測器,但它會產生大量靜態功耗,架構也不利於製程演進,本文所提出的雜訊整形SAR ADC採用被動式積分器進行雜訊整形,可以達到高解析度同時維持低功耗,有效解決此問題;此外,在其雜訊轉移函數(NTF)中額外引入一個 (-0.8, 0) 的極點,以增強低頻雜訊抑制效果。本文提出一種8×被動增益的方法實現雜訊整形達成極點最佳化,該方法結合傳統的多輸入比較器 [12] 與電容堆疊技術 [2],有效降低多輸入比較器帶來的雜訊與功耗,同時也減輕寄生電容對整體性能的影響。本設計採用台積電 180 奈米製程實現,模擬結果顯示,所提出的雜訊整形 SAR ADC 在 10 kHz 頻寬下可達到88.21 dB 的訊雜比與失真比(SNDR),其 Schreier FOM 為 167.87 dB,Walden FOM 為 256.63 fJ/conv.-step。

    This paper presents a noise-shaping Successive Approximation Register (SAR) ADC as the analog front-end (AFE) for a heart sound physiological signal sensing chip. Since heart sound sensors must capture physiological signals and convert them into high-accuracy and high-resolution digital signals, these digital outputs are provided to subsequent digital signal processors and AI accelerators. The system must also operate with low power consumption to be suitable for wearable devices. Therefore, the analog-to-digital converter is designed to meet the requirements of high resolution and low power, ensuring the reliability of clinical diagnosis and health monitoring. To meet the low power and high resolution requirements of heart sound sensing, the noise-shaping SAR ADC proposed in this paper adopts a passive integrator to perform noise shaping. Additionally, a pole at (-0.8, 0) is added in the noise transfer function (NTF) to enhance low-frequency noise attenuation, thereby effectively improving the ADC resolution. To achieve pole optimization, this paper proposes an 8× passive gain method to implement noise shaping. This approach combines the traditional multi-input comparator [12] and capacitor stacking [2], effectively reducing the noise and power consumption of the multi-input comparator while mitigating the parasitic capacitance's impact on overall performance. This design is fabricated in TSMC 180 nm technology; the post-layout simulation results reveal that the proposed noise-shaping SAR ADC can achieve a signal-to-noise and distortion ratio (SNDR) of 88.21 dB in the bandwidth of 10 kHz. The Schreier figure of merit (FoM) and the Walden FoM are 167.87 dB and 256.63 fJ/conv.-step, respectively.

    摘要 I 誌謝 XXI 目錄 XXII 表目錄 XXIV 圖目錄 XXV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 章節架構 3 第二章 雜訊整型逐漸逼近式類比至數位轉換器介紹 5 2.1 雜訊整型逐漸逼近式類比至數位轉換器 5 2.1.1 逐漸逼近式類比至數位轉換器(SAR ADC) 5 2.1.2超取樣及雜訊整形技術 7 2.1.3 雜訊整型逐漸逼近式類比至數位轉換器(Noise Shaping SAR ADC) 11 2.2 雜訊整形SAR ADC架構13 2.2.1 以多輸出比較器實現的一階雜訊整形SAR ADC[12] 14 2.2.2 以電容堆疊實現的一階雜訊整形SAR ADC[2] 16 2.2.3 全被動式雜訊整形SAR ADC的問題與挑戰19 2.3 心音感測器類比前端ADC設計考量 21 2.3.1 基於心音感測器系統考量之ADC架構分析 21 2.3.2 設計考量和規格設定 22 第三章 具有八倍被動增益和極點優化之雜訊整形逐漸逼近式類比數位轉換器(Noise Shaping SAR ADC with 8× Passive Gain and Pole Optimization) 24 3.1 架構簡介 24 3.2 理想電路行為模型和極點優化設計 24 3.2.1 一階雜訊整形SAR ADC理想電路行為模型[2] 24 3.2.2 極點優化(Pole Optimization) 26 3.2.3 具有NTF極點優化之設計訊號流程圖 27 3.3 非理想效應分析 30 3.3.1 kT/C雜訊 30 3.3.2 電容不匹配 31 3.4 具有八倍被動增益和極點優化之一階雜訊整形SAR ADC 32 3.4.1 電路架構簡介和8倍被動增益實現方法 32 3.4.2 電路運作過程和其他論文比較 35 3.4.3 具有極點優化之雜訊整形SAR ADC雜訊分析 38 3.4.4 Simulink非理想電路行為模型 43 3.4.5 數位邏輯電路和CDAC控制邏輯單元之設計 44 3.4.6 多輸入比較器 46 3.5 極點優化之雜訊整形SAR ADC模擬結果 50 3.5.1 Pre-simulation 50 3.5.2 晶片佈局 53 3.5.3 Post-simulation 59 第四章 量測考量與結果 62 4.1 晶片封裝與腳位 62 4.2 量測環境與考量 63 4.3 晶片量測結果 65 4.4 根因分析 66 4.5 文獻比較 69 第五章 結論與未來展望 70 參考文獻 71 口委建議與回覆 74

    [1] H. Zhuang et al., "A Second-Order Noise-Shaping SAR ADC With Passive Integrator and Tri-Level Voting," in IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1636-1647, June 2019.
    [2] J. Liu et al., "A 90-dB-SNDR Calibration-Free Fully Passive Noise-Shaping SAR ADC With 4× Passive Gain and Second-Order DAC Mismatch Error Shaping," IEEE Journal of Solid-State Circuits, vol. 56, no. 11, pp. 3412-3423, Nov. 2021.
    [3] H. Wang and G. C. Temes, "A Second-Order Passive Noise-Shaping SAR ADC With 4× Passive Gain and A Two-Input-Pair Comparator," in Proc. 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 2022.
    [4] H. Zhang et al., "A 2.5-MHz BW, 75-dB SNDR Noise-Shaping SAR ADC With a 1st-Order Hybrid EF-CIFF Structure Assisted by Unity-Gain Buffer," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 12, pp. 1928-1932, Dec. 2022.
    [5] Y. Song, C. -H. Chan, Y. Zhu, L. Geng, S. -P. U. and R. P. Martins, "Passive Noise Shaping in SAR ADC With Improved Efficiency," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 2, pp. 416-420, Feb. 2018, doi: 10.1109/TVLSI.2017.
    [6] L. Jie et al., "An Overview of Noise-Shaping SAR ADC: From Fundamentals to the Frontier," in IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 149-161, 2021.
    [7] Hariprasath, V. et al. “Merged capacitor switching based SAR ADC with highest switching energy-efficiency.” Electronics Letters 46 (2010): 620-621.
    [8] P. Payandehnia et al., "Fully Passive Third-Order Noise Shaping SAR ADC," Electronics Letters vol. 53 No. 8 pp. 528-530, 2017.
    [9] C. -C. Liu, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
    [10] Q. Zhang, N. Ning, J. Li, Q. Yu, K. Wu and Z. Zhang, "A Second-Order Noise-Shaping SAR ADC Using Two Passive Integrators Separated by the Comparator," IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 29, no. 1, pp. 227-231, Jan. 2021.
    [11] Q. Zhang et al., "A 13-Bit ENOB Third-Order Noise-Shaping SAR ADC Employing Hybrid Error Control Structure and LMS-Based Foreground Digital Calibration," IEEE J. Solid-State Circuits, vol. 57, no. 7, pp. 2181-2195, July 2022.
    [12] W. Guo and N. Sun, “A 12b-ENOB 61µW noise-shaping SAR ADC with a passive integrator,” ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, Switzerland, 2016, pp. 405-408
    [13] H. Zhang, N. Li, Z. Jiao, J. Zhang, X. Wang and H. Zhang, "A 1st-Order Passive Noise-Shaping SAR ADC with Improved NTF Assisted by Comparator Gain Calibration," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021, pp. 1-5
    [14] Z. Chen, M. Miyahara, and A. Matsuzawa, “A 9.35-ENOB, 14.8 fJ/conv.- step fully-passive noise-shaping SAR ADC,” in Proc. IEEE Symp. VLSI Circuits (VLSI Circuits), Jun. 2015, pp. C64–C65
    [15] J. Liu, D. Li, Y. Zhong, X. Tang and N. Sun, " A 250kHz-BW 93dB-SNDR 4th-Order Noise-Shaping SAR Using Capacitor Stacking and Dynamic Buffering," IEEE Int. Solid- State Circuits Conf. (ISSCC), San Francisco, CA, USA, 2021
    [16] Y. -H. Hwang, Y. Song, J. -E. Park and D. -K. Jeong, "A 0.6-to-1V 10k-to-100kHz BW 11.7b-ENOB Noise-Shaping SAR ADC for IoT sensor applications in 28-nm CMOS," 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), Tainan, Taiwan, 2018, pp. 247-248
    [17] J. Fredenburg and M. Flynn, "A 90MS/s 11MHz bandwidth 62dB SNDR noise-shaping SAR ADC," 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2012, pp. 468-470
    [18] X. Tang et al., "A 13.5-ENOB, 107-μW Noise-Shaping SAR ADC With PVT-Robust Closed-Loop Dynamic Amplifier," in IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3248-3259, Dec. 2020
    [19] J. Liu, X. Wang, Z. Gao, M. Zhan, X. Tang and N. Sun, " A 40kHz-BW 90dB-SNDR Noise-Shaping SAR with 4× Passive Gain and 2nd-Order Mismatch Error Shaping," 2020 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020, pp. 158-160
    [20] World Health Organization, "Cardiovascular diseases (CVDs)", June 11, 2021. [Online]. Available: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
    [21] Y. -Z. Lin, C. -Y. Lin, S. -C. Tsou, C. -H. Tsai and C. -H. Lu, "A 40MHz-BW 320MS/s Passive Noise-Shaping SAR ADC With Passive Signal-Residue Summation in 14nm FinFET," 2019 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 330-332
    [22] Analog Device, AD8232, Single-Lead, Heart Rate Monitor Front End.
    [23] J. Xu, S. Mitra, A. Matsumoto, S. Patki, C. V. Hoof, K. A. A. Makinwa, and R.F.Yazicioglu, “A Wearable 8-Channel Active-Electrode EEG/ETI Acquisition System for Body Area Networks,” IEEE J. Solid-State Circuits, vol. 49, no. 9, pp. 2005–2016, Sep. 2014.
    [24] S. Y. Lee, J. H. Hong, C. H. Hsieh, M. C. Liang, S. Y. C. Chien, K. H. Lin, "Low-power wireless ECG acquisition and classification system for body sensor networks," IEEE J. Biomed. Health Informat., vol. 19, no. 1, pp. 236-246, Jan. 2015.
    [25] S. Tannirkulam Chandrasekaran, S. P. Bhanushali, S. Pietri and A. Sanyal, "OTA-Free 1–1 MASH ADC Using Fully Passive Noise-Shaping SAR & VCO ADC," in IEEE Journal of Solid-State Circuits, vol. 57, no. 4, pp. 1100-1111, April 2022

    無法下載圖示 校內:2030-08-14公開
    校外:2030-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE