| 研究生: |
陳品宏 Chen, Pin-Hong |
|---|---|
| 論文名稱: |
非對映異構化共軛阻斷基導入二酮吡咯並吡咯共軛高分子暨本質可拉伸場效電晶體應用 Diketopyrrolopyrrole-Based Conjugated Polymer with Diastereomeric Conjugation Break Spacers for Intrinsically Stretchable Field-Effect Transistor Application |
| 指導教授: |
林彥丞
Lin, Yan-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 場效電晶體 、共軛阻斷基 、可拉伸共軛高分子 、隨機三元聚合 |
| 外文關鍵詞: | Field-effect transistor, conjugation break spacers, stretchable conjugated polymer, random terpolymerization |
| 相關次數: | 點閱:32 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,透過隨機三元聚合將共軛阻斷鏈引入可拉伸共軛高分子,因其在調節遷移性和可拉伸性方面的有效性而受到了相當大的關注。在這項研究中,一系列以異山梨醇和異甘露醇的鏈段引入至二酮吡咯並吡咯的主鏈做為共軛阻斷基。實驗結果表明,異山梨醇和異甘露醇不同的構型的共軛阻斷鏈會大幅影響固態堆積、聚集能力、晶體學參數和遷移率-可拉伸性能。然而,從有機場效電晶體的元件性能得知,異山梨醇的一系列高分子表現出最高的遷移性,其中IMN-1達到1.05 cm² V-1 s-1的高效遷移率並且在20%和60%應變下具有(85.7,78.6)%的相對結晶度,這與其最強的聚集能力相關。此外,所有聚合物主要表現出邊向取向,並且在較高含量的共軛阻斷基下,會在應變條件下觀察到面向堆積。值得一提的是,共軛阻斷鏈含量會影響其聚集行為,進而顯著影響遷移率。這一結果表明,將共軛阻斷鏈納入高分子可以通過共軛阻斷鏈的移動和旋轉增強主鏈的柔軟性,而不會影響結晶區域。另外,將不同非對映異構體的共軛阻斷基引入二酮吡咯並吡咯基共軛聚合物提供了一種通過調節聚集能力和固態堆積來調控和增強電荷傳輸性能的有效方法。
In recent years, stretchable conjugated polymers through random terpolymerization with conjugation break spacer (CBS) have gained considerable attention due to their efficacy in modulating both mobility and stretchability. In this study, a series of dianhydrohexitol epimers of isosorbide (ISB) and isomannide (IMN) units were incorporated into the diketopyrrolopyrrole-based backbone as CBS. The experimental results indicate the different configurations of ISB and IMN sufficiently affect solid-state packing, aggregation capabilities, crystallographic parameters, and mobility-stretchability properties. However, the performance of Organic Field-Effect Transistor devices demonstrates that IMN polymers exhibit the highest mobility, with IMN-1 achieving a remarkable mobility of 1.05 cm² V-1 s-1 and rDOC value of (85.7, 78.6)% under 20 and 60% strains, which is correlated with the most robust aggregation capability. Additionally, all polymers exhibit a dominant edge-on orientation, and a higher content of CBS results in the observation of face-on stacking under strain. Furthermore, the CBS content affects its aggregation behavior, notably impacting mobility. This result indicates that incorporating CBS into the polymer can enhance the flexibility of the backbone through the movement and rotation of CBS, without affecting the crystalline regions even. Additionally, introducing different diastereomers of CBSs into DPP-based conjugated polymers effectively regulates and enhances charge transport performance by adjusting aggregation capability and solid-state packing.
[1] Z. Qiu, B. A. G. Hammer, K. Müllen, Progress in Polymer Science 2020, 100, 101179.
[2] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, K. R. Mann, Chemistry of Materials 2004, 16, 4436−4451.
[3] M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, T. Park, Advanced Functional Materials 2019, 30, 1904545.
[4] M. Ashizawa, Y. Zheng, H. Tran, Z. Bao, Progress in Polymer Science 2020, 100, 101181.
[5] Y. Ling, T. An, L. W. Yap, B. Zhu, S. Gong, W. Cheng, Advanced Materials 2020, 32, 1904664.
[6] Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu, Z. Zhang, C. Lee, InfoMat 2020, 2, 1131−1162.
[7] N. A. Choudhry, L. Arnold, A. Rasheed, I. A. Khan, L. Wang, Advanced Engineering Materials 2021, 23, 2100469.
[8] G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick, J. Chen, Chemical Reviews 2022, 122, 3259−3291.
[9] H. Zhu, E. S. Shin, A. Liu, D. Ji, Y. Xu, Y. Y. Noh, Advanced Functional Materials 2019, 30, 1904588.
[10] W. Liu, C. Zhang, R. Alessandri, B. T. Diroll, Y. Li, H. Liang, X. Fan, K. Wang, H. Cho, Y. Liu, Y. Dai, Q. Su, N. Li, S. Li, S. Wai, Q. Li, S. Shao, L. Wang, J. Xu, X. Zhang, D. V. Talapin, J. J. de Pablo, S. Wang, Nature Materials 2023, 22, 737−745.
[11] S. Chang, J. H. Koo, J. Yoo, M. S. Kim, M. K. Choi, D. H. Kim, Y. M. Song, Chemical Reviews 2024, 124, 768−859.
[12] K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu, npj Flexible Electronics 2022, 6, 1.
[13] Y. Zheng, S. Zhang, J. B. Tok, Z. Bao, Journal of the American Chemical Society 2022, 144, 4699−4715.
[14] X. Yu, L. Chen, C. Li, C. Gao, X. Xue, X. Zhang, G. Zhang, D. Zhang, Advanced Materials 2023, 35, 2209896.
[15] J. Qin, L. Lan, S. Chen, F. Huang, H. Shi, W. Chen, H. Xia, K. Sun, C. Yang, Advanced Functional Materials 2020, 30, 2002529.
[16] Y. Sun, T. Liu, Y. Kan, K. Gao, B. Tang, Y. Li, Small Science 2021, 1, 2100001.
[17] J. S. Park, G. U. Kim, S. Lee, J. W. Lee, S. Li, J. Y. Lee, B. J. Kim, Advanced Materials 2022, 34, 2201623.
[18] S. Chung, S. H. Kim, E. Ok, B. J. Kim, B. Kang, K. Cho, Chemistry of Materials 2023, 36, 74−98.
[19] L. Ding, Z. D. Yu, X. Y. Wang, Z. F. Yao, Y. Lu, C. Y. Yang, J. Y. Wang, J. Pei, Chemical Reviews 2023, 123, 7421−7497.
[20] Y.-C. Lin, M. Matsuda, C.-K. Chen, W.-C. Yang, C.-C. Chueh, T. Higashihara, W.-C. Chen, Macromolecules 2021, 54, 7388−7399.
[21] M. Matsuda, C.-Y. Lin, K. Enomoto, Y.-C. Lin, W.-C. Chen, T. Higashihara, Macromolecules 2023, 56, 2348−2361.
[22] M. Matsuda, C. Y. Lin, C. Y. Sung, Y. C. Lin, W. C. Chen, T. Higashihara, ACS Applied Materials & Interfaces 2023, 15, 51492−51506.
[23] S. Wang, H. Li, K. Zhao, L. Zhang, Q. Zhang, X. Yu, H. Tian, Y. Han, Macromolecules 2022, 55, 2497.
[24] L. Chen, H. Wang, J. Liu, R. Xing, X. Yu, Y. Han, J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 838.
[25] C. B. Nielsen, M. Turbiez, I. McCulloch, Advanced Materials 2013, 25, 1859−1880.
[26] Y. Y. Lai, V. H. Huang, H. T. Lee, H. R. Yang, ACS Omega 2018, 3, 18656.
[27] A. X. Chen, A. T. Kleinschmidt, K. Choudhary, D. J. Lipomi, Chemistry of Materials 2020, 32, 7582−7601.
[28] Y. Ding, Y. Yuan, N. Wu, X. Wang, G. Zhang, L. Qiu, Macromolecules 2021, 54, 8849−8859.
[29] S. Yamamoto, M. Matsuda, C.-Y. Lin, K. Enomoto, Y.-C. Lin, W.-C. Chen, T. Higashihara, ACS Applied Polymer Materials 2022, 4, 8942−8951.
[30] C. An, W. Dong, D. Pei, X. Qin, Z. Wang, B. Zhao, L. Bu, H. Chen, Y. Han, C. Chi, Y. Geng, Macromolecules 2023, 56, 5314−5325.
[31] J. Y. Oh, S. Rondeau-Gagne, Y. C. Chiu, A. Chortos, F. Lissel, G. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. Tok, Z. Bao, Nature 2016, 539, 411−415.
[32] A. Kim, Y. Ahn, W. Li, S. H. Park, M. J. Cho, D. H. Choi, H. Yang, ACS Applied Materials&Interfaces 2023, 15, 58663−58672.
[33] Y.-W. Huang, Y.-C. Lin, H.-C. Yen, C.-K. Chen, W.-Y. Lee, W.-C. Chen, C.-C. Chueh, Chemistry of Materials 2020, 32, 7370−7382.
[34] D. Liu, J. Mun, G. Chen, N. J. Schuster, W. Wang, Y. Zheng, S. Nikzad, J. C. Lai, Y. Wu, D. Zhong, Y. Lin, Y. Lei, Y. Chen, S. Gam, J. W. Chung, Y. Yun, J. B. Tok, Z. Bao, Journal of the American Chemical Society 2021, 143, 11679−11689.
[35] D. Pei, Z. Wang, Z. Peng, J. Zhang, Y. Deng, Y. Han, L. Ye, Y. Geng, Macromolecules 2020, 53, 4490−4500.
[36] H. C. Wu, S. Nikzad, C. Zhu, H. Yan, Y. Li, W. Niu, J. R. Matthews, J. Xu, N. Matsuhisa, P. K. Arunachala, R. Rastak, C. Linder, Y. Q. Zheng, M. F. Toney, M. He, Z. Bao, Nature Communications 2023, 14, 8382.
[37] J. Mun, G. J. N. Wang, J. Y. Oh, T. Katsumata, F. L. Lee, J. Kang, H. C. Wu, F. Lissel, S. Rondeau‐Gagné, J. B. H. Tok, Z. Bao, Advanced Functional Materials 2018, 28, 1804222.
[38] A. Rahmanudin, L. Yao, K. Sivula, Polymer Journal 2018, 50, 725−736.
[39] S. Wang, K. Zhao, J. Li, X. Yu, Q. Zhang, Y. Han, Macromolecular Rapid Communications 2024, 45, 2300624.