簡易檢索 / 詳目顯示

研究生: 陳泓任
Chen, Hung-Jen
論文名稱: 一種適用於極小相位連續時間系統之強健比例積分最佳線性二次式狀態估測追蹤器
A Robust PI Optimal Linear Quadratic State-Estimate Tracker for Continuous-Time Minimum Phase Systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 68
中文關鍵詞: 最佳線性二次狀態估測器頻率塑形比例積分微分濾波器非極小相位系統干擾估測
外文關鍵詞: Optimal linear quadratic state estimator, frequency shaping, PID filter, non-minimum phase system, disturbance estimation
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據比例積分微分濾波器塑形方法,本論文提出另一適用於非極小相位非方形連續時間多變數系統之比例積分最佳線性二次式狀態估測器,結合近期被提出的最佳線性二次式追蹤器,所提出的最佳線性二次狀態估測追蹤器,對於無法量測系統之狀態且具有任意參考輸入軌跡之非極小相位非方形多變數系統,可達成類似最佳最小相位的輸出追蹤效能。本論文亦提出適用於具未知輸入干擾之連續時間最小相位系統之強健線性二次式狀態估測追蹤器,採用等效輸入干擾估測器改善其干擾抑制之效果。

    Based on the proportional-integral-derivative (PID) filter shaping approach, this thesis presents an alternative proportional-plus-integral (PI) optimal linear quadratic state estimator (LQSE) for the continuous-time non-square and non-minimum phase (NMP) multivariable systems. Together with the recently developed optimal linear quadratic tracker (LQT), the proposed LQSE-based tracker is able to optimally achieve good minimum phase-like tracking performances for a non-square NMP multivariable system with unmeasurable states and arbitrary command inputs. This thesis also proposes the robust linear quadratic state-estimate tracker for continuous-time minimum phase systems with unknown input disturbance, and the proposed method improves the disturbance-rejection performance based on the estimation of an equivalent input disturbance (EID).

    中文摘要 I Abstract II Acknowledgements III List of Contents IV List of Figures VI Chapter 1 Introduction 1 Chapter 2 An Optimal PI State-Feedback Linear Quadratic Tracker for Non-Square Non-Minimum Phase Systems: PID Filter-Based Frequency Shaping Approach 3 2.1 Introduction to the optimal linear quadratic tracker for the system with a direct-feedthrough term and known system disturbances 4 2.2 Introduction to the optimal PI state-feedback linear quadratic tracker for non-square non-minimum phase systems: PID filter-based frequency shaping approach 6 Chapter 3 An Alternative PI Optimal Linear Quadratic State-Estimate Tracker for Continuous-Time Non-Square Non-Minimum Phase Systems 13 3.1 An alternative PI linear quadratic analog estimators for non-minimum phase systems: PID filter-based frequency shaping approach 14 3.2 Proportional-plus-integral state-estimate tracker for the non-square non-minimum phase system 24 3.3 An illustrative example 26 Chapter 4 A Robust Linear Quadratic State-Estimate Tracker for Continuous-Time Minimum Phase Systems 36 4.1 The optimal PI linear quadratic analog estimators for non-minimum phase systems: PID filter-based frequency shaping approach 37 4.2 A robust linear quadratic state-estimate tracker for continuous-time minimum phase systems 47 4.3 Illustrative examples 53 Chapter 5 Conclusion 66 References 67

    Anderson, B.D.O., & Mingori, D.L. (1985). Use of frequency dependence in linear quadratic problems to frequency shape robustness. Journal of Guidance and Control, 8(3), 397–401.
    Anderson, B.D.O., & Moore, J.B. (1989). Optimal Control: Linear Quadratic Methods. Englewood Cliffs, NJ: Prentice-Hall.
    Chen, Y.M., & Wu, Y.C. (1992). Modified recursive least-squares algorithm for parameter identification. International Journal of Systems Science, 23(2), 187–205.
    Doraiswami, R., Jiang, J., & Balasubramanian, R. (1986). On-line frequency-and-time-domain identification of a linear multivariable system. International Journal of Systems Science, 17(9), 1349–1371.
    Ebrahimzadeh, F., Tsai, J. S. H., Chung, M. C., Liao, Y. T., Guo, S. M., Shieh, L. S., & Wang, L. (2017a). A generalized optimal linear quadratic tracker with universal applications. Part 2: discrete-time systems. International Journal of Systems Science, 48(2), 397–416.
    Ebrahimzadeh, F., Tsai, J. S. H., Liao, Y. T., Chung, M. C., Guo, S. M., Shieh, L. S., & Wang, L. (2017b). A generalized optimal linear quadratic tracker with universal applications–part 1: continuous-time systems. International Journal of Systems Science, 48(2), 376–396.
    Emami-Naeini, A., & Van Dooren, P. (1982). Computation of zeros of linear multivariable systems. Automatica, 18(4), 415–430.
    Latawiec, K., Banka, S., & Tokarzewski, J. (2000). Control zeros and non-minimum phase LTI MIMO systems. Annual Reviews in Control, 24(1), 105–112.
    Patel, R.V., & Misra, P. (1992). Transmission zero assignment in linear multivariable systems; Part II: The general case. American Control Conference, Chicago, IL, 24-26 June, 1992, 644–648.
    Ray, G., & Rama Rao, P. (1990). On-line identification and control of multivariable discrete-time systems based on a transformed model. International Journal of Systems Science, 21(1), 175–191.
    She, J. H., Fang, M., Ohyama, Y., Hashimoto, H., & Wu, M. (2008). Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Transactions on Industrial Electronics, 55(1), 380–389.
    Smagina, Y. (2002). Zero assignment in multivariable system using pole assignment method, available at: arXiv:math/0207094v1 [math.DS].
    Syrmos, V.L., & Lewis, F.L. (1992). Transmission zero assignment using semistate descriptions. American Control Conference, Chicago, 24-26 June, 1992, 791–795.
    Sebakhy, O.A., Singaby, M.EL., & Arabawy, I.F.EL. (1986). Zero placement and squaring problem: A state space approach. International Journal of Systems Science, 17(12), 1741–1750.
    Sagara, S., Yang, Z.J., & Wada, K. (1991). Identification of continuous-time systems using digital low-pass filters. International Journal of Systems Science, 22(7), 1157–1176.
    Tang, D., Chen, L., & Hu, E. (2014). A novel unknown-input estimator for disturbance estimation and compensation. Proceedings of Australasian Conference on Robotics and Automation, Melbourne, 2-4 Dec., 2014.
    Tsai, J.S.H., Liao, Y.-T., Ebrahimzadeh, F., Lai, S.Y., Su, T.J., Guo, S.M., Shieh, L.S., & Tsai, T. J. (2017). A new PI optimal linear quadratic state-estimate tracker for continuous-time non-square non-minimum phase systems, International Journal of Systems Science, 48(7), 1438–1459.
    Trinh, H., Fernando, T., & Nahavandi, S. (2004). Design of reduced-order functional observers for linear systems with unknown inputs. Asian Journal of Control, 6(4), 514–520, doi:10.1111/j.1934-6093.2004.tb00372.x
    Wu, W.T., Tseng, C.G., & Chu, Y.T. (1994). System identification and on-line robust control of a multivariable system. International Journal of Systems Science, 25(3), 423–439.
    Zheng, W.X. (2006). Least squares parameter estimation of linear systems with noisy input-output data. International Journal of Systems Science, 37(7), 447–453.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE