| 研究生: |
王家豪 Wang, Jai-Hao |
|---|---|
| 論文名稱: |
以釔摻雜的硫氰酸亞銅之自供電P-I-N鈣鈦礦光電檢測器的製備與光電特性研究 The fabrication of self-powered P-I-N perovskite photodetectors using yttrium-doped cuprous thiocyanate and optoelectronic characterization study |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 硫氰酸亞銅薄膜 、釔 、開關比 、響應度 、自供電紫外光感測器元件 |
| 外文關鍵詞: | cuprous thiocyanate film, yttrium, on/off ratio, responsivity, self-supplied UV photodetector element |
| 相關次數: | 點閱:33 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CuSCN是一種無機的p型半導體,具有電洞傳輸、高光學透明度、寬帶隙 (>3.4 eV)和良好熱穩定性等特性,這些性質讓CuSCN成為理想的電洞傳輸層(HTL),而Y2O3具有優異的熱力學穩定性,而且是一種相對便宜且環保的稀土氧化物,並可以提高電子轉移速率,因此選擇作為本研究的材料。本研究第一部分使用硫氰酸亞銅(CuSCN)混和Y2O3,在ITO基板上利用旋轉塗佈法製作而成,本研究的第一部分中以UV-vis、SEM、EDS及循環伏安法來探討CuSCN混和Y2O3的材料機制。EDS分析中證明了Y2O3混合入了CuSCN裡進而取代銅增加導電性及載子遷移率。研究發現在2%混合的Y2O3有著最小的價帶邊緣(為5.28eV)。同時隨著混和比例增加,在2%時有著最緻密的表面形貌。在電導率的部分,獲得了最高為764 S cm−1。
我們利用第一部分的結果製造了P-I-N自供電的UV光電感測器,其結構為ITO substrate/ZnO seed layer/ZnO nanorod/CsPbBr3/CuSCN mixed Y2O3/Ag,以4155C來量測元件的特性。在響應時間上,上升時間和下降時間從原先的26 ms/22 ms,降低至9 ms/5 ms;響應度從452 mA/W增加到685 mA/W,開/關比增加到 2.47x106。結果表明,Y2O3的混合有助於提高P-I-N光電探測器的裝置性能。
CuSCN is an inorganic p-type semiconductor with the properties of hole transport, high optical transparency, wide bandgap (>3.4 eV), and good thermal stability, which make CuSCN an ideal hole transport layer (HTL), while Y2O3 has excellent thermal stability, and it is a relatively inexpensive and environmentally friendly rare-earth oxide with the capability to enhance the electron transfer rate, and therefore chosen as the material for this study. In the first part of this study, copper thiocyanate (CuSCN) mixed with Y2O3 was fabricated on ITO substrate by rotational coating method, and UV-vis、SEM、EDS and cyclic voltammetry were used to investigate the material mechanism of the mixture of CuSCN and Y2O3 in the first part of this study, and it was proved that the Y2O3 mixed with CuSCN replaces Cu in EDS analysis. The conductivity and carrier mobility are increased. It is found that Y2O3 mixed at 2% has the smallest valence band edge (5.28 eV). Meanwhile, with the increase of mixing ratio, the densest surface morphology is obtained at 2%. In the conductivity section, the highest value of 764 S cm-1 was obtained.
We fabricated a P-I-N self-powered UV photoelectric sensor with the structure of ITO substrate/ZnO seed layer/ZnO nanorod/CsPbBr3/CuSCN mixed Y2O3/Ag using the results of the first part to measure the characteristics of the device at 4155C. In terms of response time, the rise time and fall time decreased from the original 26 ms/22 ms to 9 ms/5 ms; the response increased from 452 mA/W to 685 mA/W, and the on/off ratio increased to 2.47x105. The results showed that the mixing of Y2O3 helps to improve the device performance of the P-I-N photodetector.
[1] P. Chen and T. Hang, "Facile Fabrication of UV Photodetectors Using Spin-Coating Flame-SY2O3nthesized ZnO Nanoparticles", ACS Applied Nano Materials, 6, 1948 (2023).
[2] A. N. Kislov and A. F. Zatsepin, "Structural and vibrational properties of wurtzite ZnO with oxY2O3gen-deficient defects: ab initio and potential-based calculations.", PhY2O3sical ChemistrY2O3 Chemical PhY2O3sics, 25, 16354 (2023).
[3] C.-Y2O3. TsaY2O3, I. P. Hsiao, F.-Y2O3. Chang and C.-L. Hsu, "Improving the photoelectrical characteristics of self-powered p-GaN film/n-ZnO nanowires heterojunction ultraviolet photodetectors through gallium and indium co-doping." , Materials Science in Semiconductor Processing, 121, 105295 (2021).
[4] R. Y2O3ang, F. Wang, J. Lu, Y2O3. Lu, B. Lu, S. Li and Z. Y2O3e, "ZnO with p-TY2O3pe Doping: Recent Approaches and Applications." , ACS Applied Electronic Materials, 5, 4014 (2023).
[5] M. K. Hossain, M. K. A. Mohammed, R. PandeY2O3, A. A. Arnab, M. H. K. Rubel, K. M. Hossain, M. H. Ali, "Numerical AnalY2O3sis in DFT and SCAPS-1D on the Influence of Different Charge Transport LaY2O3ers of CsPbBr3 Perovskite Solar Cells.", EnergY2O3 & Fuels, 37, 6078 (2023).
[6] J. E. Jaffe, T. C. Kaspar, T. C. DroubaY2O3, T. Varga, M. E. Bowden and G. J. Exarhos, "Electronic and Defect Structures of CuSCN." , The Journal of PhY2O3sical ChemistrY2O3 C, 114, 9111 (2010).
[7] A. Y2O3amada, B. Sang and M. Konagai, "Atomic laY2O3er deposition of ZnO transparent conducting oxides.", Applied Surface Science, 112, 216 (1997).
[8] A. G. Emslie, F. T. Bonner and L. G. Peck, "Flow of a Viscous Liquid on a Rotating Disk.", Journal of Applied PhY2O3sics, 29, 858 (1958).
[9] A. Perumal, H. Faber, N. Y2O3aacobi-Gross, P. PattanasattaY2O3avong, C. Burgess, S. Jha, M. A. McLachlan, P. N. Stavrinou, T. D. Anthopoulos and D. D. C. BradleY2O3, "High-EfficiencY2O3, Solution-Processed, MultilaY2O3er Phosphorescent Organic Light-Emitting Diodes with a Copper ThiocY2O3anate Hole-Injection/Hole-Transport LaY2O3er." , Advanced Materials, 27, 93 (2015).
[10] G. WY2O3att-Moon, D. G. Georgiadou, J. Semple and T. D. Anthopoulos, "Deep Ultraviolet Copper(I) ThiocY2O3anate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion LithographY2O3." , ACS Applied Materials & Interfaces, 9, 41965 (2017).
[11] G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P. V. V. JaY2O3aweera, D. B. R. A. De Silva and K. Tennakone, "DY2O3e-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propY2O3l sulphide." , Solar EnergY2O3 Materials and Solar Cells, 69, 195 (2001).
[12] Ashtar. M, et al. (2024). "Improved photodetection performance of self-powered UV photodetector based on PZT/CuSCN heterojunction." Solar EnergY2O3 Materials and Solar Cells 270: 112812.
[13] Garnier. J, et al. (2015). "PhY2O3sical Properties of Annealed ZnO Nanowire/CuSCN Heterojunctions for Self-Powered UV Photodetectors." ACS Applied Materials & Interfaces 7(10): 5820-5829.
[14] Majidian Taleghani, N., et al. (2022). "StudY2O3 of metal-Co/Zn-doped CuSCN contacts for efficient hole transport in perovskite solar cells." Optical Materials 133: 113009.
[15] Liang, "Cl2-Doped CuSCN Hole Transport LaY2O3er for Organic and Perovskite Solar Cells with Improved StabilitY2O3. ", ACS energY2O3 letters. 7.9 (2022): 3139–3148.
[16] Hou. "Realizing Efficient and Stable N-i-p Perovskite Solar Cells with CuSCN Hole Transporting Materials via LiSCN Doping and Interface Modulation. ", ACS applied energY2O3 materials. 7.6 (2024): 2217–2224.
[17] Hou S., et al. "HighlY2O3 efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport laY2O3er." Chinese PhY2O3sics B 29(7): 078801.
[18] Xu, L. et al, "Improving the efficiencY2O3 and stabilitY2O3 of inverted perovskite solar cells bY2O3 CuSCN-doped PEDOT:PSS.", Solar EnergY2O3 Materials and Solar Cells 206: 110316.
[19] Kim. et al . "MethY2O3lammonium Compensation Effects in MAPbI3 Perovskite Solar Cells for High-QualitY2O3 Inorganic CuSCN Hole Transport LaY2O3ers." ACS applied materials & interfaces. 14.4 (2022): 5203–5210.
[20] Zhou, Q, et al. "Annual research review of perovskite solar cells in 2023." Materials Futures 3(2) (2024): 022102.
[21] Wang. et al . "Bifunctional Stabilization of All-Inorganic α-CsPbI3 Perovskite for 17% EfficiencY2O3 Photovoltaics. " Journal of the American Chemical SocietY2O3. 140.39 (2018): 12345–12348.
[22] Chen, W., et al. "A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light InstabilitY2O3 of Organic Solar Cells and Achieving 14.03% EfficiencY2O3." Advanced Materials 30(21) (2018): 1800855.
[23] Montecucco. R, et al. "The Stabilization of CsPbI3−xBrx Phase bY2O3 Lowering Annealing Temperature for Efficient All-Inorganic Perovskite Solar Cells." Solar RRL 7(20) (2023): 2300358.
[24] Chen, W et al. "Precise control of crY2O3stal growth for highlY2O3 efficient CsPbI2Br perovskite solar cells." Joule 3(1) (2019): 191-204.
[25] Ahuja M, et al. "Thickness optimization of metal halide perovskite solar cell bY2O3 numerical simulation method." Materials TodaY2O3: Proceedings. (2023)
[26] Miao. et al “Mechanism of Solvent Engineering for Controlling the Room-Temperature CrY2O3stallization Kinetics of MAPbI3 Perovskite PolY2O3crY2O3stals.” Journal of phY2O3sical chemistrY2O3. 128.12 (2024): 5236–5243.
[27] Y2O3a-ling WANG, Li-Y2O3ing Y2O3ANG, Lan LI, et al. A Simple Method to Enhance Performance of Inverted Planar Perovskite Solar Cells bY2O3 Using PEDOT∶PSS Doped with DMSO as Hole Transport LaY2O3er[J]. 发光学报, 2022,43(5):725-735.
[28] ChoubeY2O3 A, et al. "Low-temperature crY2O3stallization and growth of CsPbIBr2 films through PbX2-DMSO adduct towards stable and efficient carbon-based all-inorganic perovskite solar cells." International Journal of EnergY2O3 Research 46(7) (2022): 9310-9322.
[29] Jeon, N. J., et al. "Solvent engineering for high-performance inorganic–organic hY2O3brid perovskite solar cells." Nature Materials 13(9): 897-903.
[30] Jeon, Nam Joong, et al. "Solvent engineering for high-performance inorganic–organic hY2O3brid perovskite solar cells." Nature materials 13.9 (2014): 897-903.
[31] Chen, H., et al. (2016). "Nanostructured Photodetectors: From Ultraviolet to Terahertz." Advanced Materials 28(3): 403-433.
[32] Han, S., et al. (2023). "Flexible, active P-tY2O3ped copper(I) thiocY2O3anate (p-CuSCN) films as self-powered photodetectors for large-scale optoelectronic sY2O3stems." Materials TodaY2O3 Electronics 5: 100048.
[33] Hou. “Realizing Efficient and Stable N-i-p Perovskite Solar Cells with CuSCN Hole Transporting Materials via LiSCN Doping and Interface Modulation.” ACS applied energY2O3 materials. 7.6 (2024): 2217–2224.
[34] Liang. “Cl2-Doped CuSCN Hole Transport LaY2O3er for Organic and Perovskite Solar Cells with Improved StabilitY2O3.” ACS energY2O3 letters. 7.9 (2022): 3139–3148.
[35] Hou, S., et al. (2020). "HighlY2O3 efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport laY2O3er*." Chinese PhY2O3sics B 29(7): 078801.
[36] Chen, H., et al. (2016). "Nanostructured Photodetectors: From Ultraviolet to Terahertz." Advanced Materials 28(3): 403-433.
[37] Liang.“Chlorine-Infused Wide-Band Gap p-CuSCN/n-GaN Heterojunction Ultraviolet-Light Photodetectors.” ACS applied materials & interfaces. 14.15 (2022): 17889–17898.
[38] Han, M.-D.-X., et al. (2022). "Improved electrical properties of cuprous thiocY2O3anate bY2O3 lithium doping and its application in perovskite solar cells." Acta PhY2O3sica Sinica 71(21): 217801-217801-217801-217807.
[39] Kavan. “Electrochemical Characterization of CuSCN Hole-Extracting Thin Films for Perovskite Photovoltaics.” ACS applied energY2O3 materials. 2.6 (2019): 4264–4273.
[40] Li, Y2O3., et al. (2024). "Solution treatment controls charge-transfer states and energY2O3-level alignment at hY2O3brid CuSCN-organic interfaces." RSC Applied Interfaces 1(3): 492-501.
[41] Huang, Y2O3.-T., et al. (2023). "The studY2O3 of electro-deposited CuSCN thin films and optimize electrolY2O3te: Material analY2O3ses, mechanism investigation." Materials Science and Engineering: B 296: 116622.
[42] Baig, S., et al. (2020). "Y2O3ttrium Doped Copper (II) Oxide Hole Transport Material as Efficient Thin Film Transistor." ChemPhY2O3sChem 21(9): 895-907.
[43] Samarakoon, S. P. A. U. K., et al. (2018). "Characterization of Fe doped n-CuSCN/p-Cu<inf>2</inf>S solid-state photovoltaic cell." Materials Research Express 5(6).
[44] Zarca, G., et al. (2018). "Novel solvents based on thiocY2O3anate ionic liquids doped with copper(I) with enhanced equilibrium selectivitY2O3 for carbon monoxide separation from light gases." Separation and Purification TechnologY2O3 196: 47-56.
[45] Baranwal, A. K., et al. (2018). "Fabrication of fullY2O3 non-vacuum processed perovskite solar cells using an inorganic CuSCN hole-transporting material and carbon-back contact." Sustainable EnergY2O3 and Fuels 2(12): 2778-2787.
[46] Ranasinghe, C. S. K., et al. (2014). "Development of dY2O3e-sensitized solid-state ZnO/D149/CuSCN solar cell." International Journal of Nanoscience 13(4).
[47] Ladhe, R. D., et al. (2010). "LPG sensor based on complete inorganic n-Bi<inf>2</inf>S <inf>3</inf>-p-CuSCN heterojunction sY2O3nthesized bY2O3 a simple chemical route." Journal of PhY2O3sics D: Applied PhY2O3sics 43(24).
[48] Perera, V. P. S., et al. (2005). "Doping CuSCN films for enhancement of conductivitY2O3: Application in dY2O3e-sensitized solid-state solar cells." Solar EnergY2O3 Materials and Solar Cells 86(3): 443-450.
[49] Chandra, D., et al. (2024). "Performance enhancement of OLED emploY2O3ing CuSCN interfacial laY2O3er."
[50] Kim, G., et al. (2022). "MethY2O3lammonium Compensation Effects in MAPbI<inf>3</inf>Perovskite Solar Cells for High-QualitY2O3 Inorganic CuSCN Hole Transport LaY2O3ers." ACS Applied Materials and Interfaces 14(4): 5203-5210.
[51] Hisatsune, K., et al. (2024). "Effect of Br Ions in OctY2O3lammonium 2D Perovskites for Performance Improvement of CuSCN-Based Perovskite Solar Cells."
[52] Gagaoudakis, E., et al. (2022). "Low-energY2O3 consumption CuSCN-based ultra-low-ppb level ozone sensor, operating at room temperature." Sensors and Actuators A: PhY2O3sical 338.
校內:2029-08-20公開