簡易檢索 / 詳目顯示

研究生: 蕭崇閔
Shiao, Chung-Min
論文名稱: 基於電路內部響應及邏輯重植之低面積需求的內建自我測試架構
A Low Area Overhead BIST Architecture Based on Response Feedback and Logic Reseeding
指導教授: 李昆忠
Lee, Kuen-Jong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 38
中文關鍵詞: 內建自我測試混合模式之內建自我測試基於內部響應之內建自我測試重植
外文關鍵詞: built-in self-test (BIST), mixed-mode BIST, internal-response-based BIST, reseeding
相關次數: 點閱:195下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在測試積體電路的方法裡,採用環型自我測試路徑 (circular self-test path) 的內建自我測試架構 (built-in self-test) 是一個很吸引人的技術。這種測試架構能同時進行壓縮電路輸出響應 (output response) 與產生測試向量 (test pattern),不需要一個額外的響應分析器 (response analyzer)。另外,其它文獻也指出,可以利用電路的內部響應來產生特定測試向量。
    我們在本篇論文提出一個嶄新的內建自我測試方法。其中一個特殊向量產生器可以壓縮電路的輸出響應並接著產生新的測試向量給電路。提出的方法主要包含兩個技術以提高偵測錯誤能力。第一,利用電路內部接線產生特定測試向量,不需要任何儲存裝置,第二,插入觀察點 (observation points) 來提高隨機向量的偵測錯誤能力。
    由實驗結果得知,我們的方法在ISCAS及IWLS標準測試電路可以達到百分之百的錯誤覆蓋率,而且平均上,需要的電路內部接線 (含觀察點) 分別只佔所有接線的0.0837%及0.0303%,閘極面積增長分別只有2.27%和1.79%。另外,我們提出的方法也可以大幅減少分析電路的輸出響應所需要的硬體面積。

    The built-in self-test (BIST) scheme which adopts circular self-test path (CSTP) is an attractive technique for testing integrated circuits. It can compact output response of the circuit under test (CUT) and generate a new pattern concurrently. As a result, it does not required an additional module for response analysis. Moreover, some papers use internal response from the CUT to generate deterministic patterns.
    In this thesis, a new BIST scheme is proposed, which adopts a special test generator that can generate patterns and compact output response of the CUT. And, the proposed method utilizes very few internal nets of the CUT to generate all required data without any storage requirement. In addition, observation point insertion is employed to increase random testability of faults.
    Experimental results show that the proposed approach can achieve 100% fault coverage by average 0.0837% and 0.0303% of internal nets that include inserted observation points and with average 2.27% and 1.79% gate area overhead on ISCAS and IWLS benchmark circuits, respectively. In addition, our approach can reduce the hardware about response compaction significantly.

    Chapter 1 Introduction 1 Chapter 2 Previous Work 5 2.1 Circular self-test path (CSTP/Circular) BIST 5 2.2 Internal-response-based BIST 7 Chapter 3 Proposed BIST Scheme 9 Chapter 4 Seed Determination and Net Identification Procedure 14 4.1 Random-Resistant Faults and Observation Points Determination 16 4.2 Injection Sites on the Chain and XOR-Network Determination 17 4.3 Seed Candidate Generation 18 4.4 Seed Determination and Net Identification 21 Chapter 5 Experimental Results 25 5.1 Results of Proposed BIST Scheme 25 5.2 Comparisons with Previous CSTP-Based BIST 30 5.3 Comparisons with Previous Internal-Response-Based BIST 31 5.4 Small Area Overhead for Response Compaction 32 Chapter 6 Conclusions 34 References 35

    [1] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for Testability, Morgan Kaufmann, 2006.
    [2] B. Koenemann, “LFSR-coded test patterns for scan designs,” in Proc. Europe Test Conf., 1991, pp.237-242.
    [3] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman and B. Courtois, "Built-in test for circuits with scan based on reseeding of multiple-polynomial linear feedback shift registers," IEEE Trans. on Comput., Vol. 44, No. 2, pp. 223-233, 1995.
    [4] P. Kongtim and T. Reungpeerakul, "Parallel LFSR reseeding with selection register for mixed-mode BIST," in Proc. Asian Test Symp., pp. 153-158, 2010.
    [5] W.-C. Lien, T.-Y. Hsieh, and K.-J. Lee, “A test-per-clock LFSR reseeding algorithm for concurrent reduction on test sequence length and test data volume,” in Proc. Asian Test Symp., pp.278-283, 2012.
    [6] G. Kiefer and H. Wunderlich, "Deterministic BIST with multiple scan chains," in Proc. Int. Test Conf., pp. 1057-1064, 1998.
    [7] N. A. Touba and E. J. McCluskey, "Bit-fixing in pseudorandom sequences for scan BIST," IEEE Trans. on Comput.-Aided Des., Vol. 20, No. 4, pp. 545-555, 2001.
    [8] A. A. Al-Yamani and E. J. McCluskey, "Built-in reseeding for serial BIST," in Proc. VLSI Test Symp., pp. 63-68, 2003.
    [9] A. Krasniewski and S. Pilarski, “Circular self-test path: A low-cost BIST technique for VLSI circuits,” IEEE Trans. on Comput.-Aided Des., Vol. 8, No. 1, pp. 46-55, 1989.
    [10] J. Carletta and C. Papachristou, "Structural constraints for circular self-test paths," in Proc. VLSI Test Symp., pp. 87-92, 1994.
    [11] B. Chien and S. Simmons, "Enhanced technique for built-in self-test of sequential logic," in Proc. Canadian Conf. on Ele. and Comput. Engineering, Vol. 4, pp. 2009-2012, 2004.
    [12] N. A. Touba, “Circular BIST with State Skipping,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, Vol. 10, No. 5, pp. 668-672, 2002.
    [13] K. Wen, Y. Hu, and X. Li, “Deterministic Circular Self-Test Path,” Tsinghua Science and Technology, Vol. 12, No. S1, pp. 20-25, 2007.
    [14] K. Jishun, O. Xiong, and Y. Zhiqiang, “A novel BIST scheme using test vectors applied by circuit-under-test itself,” in Proc. Asian Test Symp., pp. 75-80, 2008.
    [15] W.-C. Lien and K.-J. Lee, “A complete logic BIST technology with no storage requirement,” in Proc. Asian Test Symp., pp. 129-134, 2010.
    [16] W.-C. Lien, T.-Y. Hsieh, and K.-J. Lee, “Routing-efficient implementation of an internal-response-based BIST architecture,” in Int’l Symp. on VLSI Design, Automation and Test (VLSI-DAT), pp. 1-4, 2012.
    [17] W.-C. Lien, K.-J. Lee, T.-Y. Hsieh, and K. Chakrabarty, "A new LFSR reseeding scheme via internal response feedback," in Proc. Asian Test Symp., pp. 97-102, 2013.
    [18] N. A. Touba and E. J. McCluskey, "Test point insertion based on path tracing," in Proc. VLSI Test Symp, pp. 2-8, 1996.
    [19] B. H. Seiss, P. M. Trouborst, and M. H. Schulz, “Test point insertion for scan-based BIST, ” in Proc. European Test Conf., pp. 253-262, 1991.
    [20] H. Vranken, F. Meister, and H. Wunderlich, "Combining deterministic logic BIST with test point insertion," in Proc. European Test Workshop, pp. 105-110, 2002.
    [21] S. Remersaro, J. Rajski, T. Rinderknecht, S. M. Reddy, and I. Pomeranz, "ATPG Heuristics Dependant Observation Point Insertion for Enhanced Compaction and Data Volume Reduction," in IEEE Int’l Symp. on Defect and Fault Tolerance of VLSI Systems, pp. 385-393, 2008.
    [22] H. T. Bui, A. K. Al-Sheraidah, and Y. Wang, “New 4-transistor XOR and XNOR designs,” in Proc. Asia Pacific Conf. on ASICs (AP-ASIC), pp.25-28, 2000.
    [23] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design (International Edition), McGraw-Hill, 2007.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE