簡易檢索 / 詳目顯示

研究生: 林博俊
Lin, Bo-Jun
論文名稱: 兼具負載適應能力暨寬輸入及寬輸出電壓範圍之多諧振轉換器與降壓轉換器之整合研究
Integration Study of Multi-Resonant Converter and Buck Converter with Load Adaptability and Wide Range of Voltage Input and Output
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 81
中文關鍵詞: 寬輸入及寬輸出電壓範圍多諧振轉換器負載變動適應能力
外文關鍵詞: Wide range of voltage input and output, multi-resonant converter, load adaptability
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 II 英文摘要 III 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 符號說明 XIII 第一章 緒論 1 1-1 研究動機及文獻探討 1 1-2 研究方法 2 1-3 內容大綱 3 第二章 兩級電路架構分析 5 2-1 簡介 5 2-2 多諧振轉換器之特性分析 6 2-2-1 多諧振轉換器之電壓增益 6 2-2-2 多諧振轉換器之阻抗分析 9 2-3 降壓轉換器分析 12 2-4 兩級電路動作時序分析 14 2-5 脈波頻率調變與脈波寬度調變 19 第三章 兩級電路參數設計與控制策略分析 21 3-1 簡介 21 3-2 回授系統之驅動電路與電壓檢測電路分析 22 3-2-1 開關元件驅動電路分析 22 3-2-2 電壓檢測電路分析 23 3-3 兩級電路之回授系統控制策略 23 3-4 兩級電路參數設計 25 3-4-1 多諧振轉換器設計步驟 26 3-4-2 降壓轉換器設計步驟 33 3-4-3 分析電感繞製匝數及鐵芯規格 34 3-5 兩級電路之電路實體圖 36 第四章 實作測試結果 38 4-1 簡介 38 4-2 兩級電路測試 39 4-2-1 負載變動之輸出電壓測試 39 4-2-2 輸入電壓調整與負載變動時之輸出電壓測試 43 4-3 調整輸入電壓時之功率開關切換測試 48 4-4 動態響應測試 50 4-5 兩級電路效率量測 52 第五章 結論與未來研究方向 57 5-1 結論 57 5-2 未來研究方向 58 參考文獻 59

    [1] Y. Sun, Z. Deng, G. Xu, G. Deng, Q. Ouyang, and M. Su, “ZVS Analysis and Design for Half Bridge Bidirectional LLC-DCX Converter with Consideration of Nonlinear Capacitance and Different Load Under Synchronous Turn-On and Turn-Off Modulation,” IEEE Transactions on Transportation Electrification, vol. 8, no. 2, pp. 2429- 2443, Jun. 2022.
    [2] P. Jiang, H. Feng, and L. Ran, “ZVS Analysis and a Design Method for Unidirectional Medium-Voltage LLC-DCX with High Step-Up Ratio,” IEEE Transactions on Power Electronics, vol. 39, no. 3, pp. 2948-2953, Mar. 2024.
    [3] J. Zeng, G. Zhang, S. S. Yu, B. Zhang, and Y. Zhang, “LLC Resonant Converter Topologies and Industrial Applications- A review,” Chinese Journal of Electrical Engineering, vol. 6, no. 3, pp. 73-84, Sept. 2020.
    [4] H. Ma, Y. Li, Q. Chen, L. Zhang, and J. Xu, “A Single-Stage Integrated Boost-LLC AC–DC Converter with Quasi-Constant Bus Voltage for Multichannel LED Street-Lighting Applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 3, pp. 1143-1153, Sept. 2018.
    [5] J. -Y. Lin, H. -Y. Yueh, Y. -F. Lin, and P. -H. Liu, “Variable-Frequency and Phase-Shift with Synchronous Rectification Advance On-Time Hybrid Control of LLC Resonant Converter for Electric Vehicles Charger,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 4, no. 1, pp. 348-356, Jan. 2023.
    [6] M. Li, C. Wang, Z. Ouyang, and M. A. E. Andersen, “Optimal Design of a Matrix Planar Transformer in an LLC Resonant Converter for Data Center Applications,” IEEE Journal of Emerging and Selected Topics inPower Electronics, vol. 11, no. 2, pp. 1778-1787, Apr. 2023.
    [7] Y. Wei, Q. Luo, and A. Mantooth, “Overview of Modulation Strategies for LLC Resonant Converter,” IEEE Transactions on Power Electronics, vol. 35, no. 10, pp. 10423-10443, Oct. 2020.
    [8] A. Vuchev and T. Grigorova, “A Study of a Phase-Shifted Full-Bridge LLC Resonant Converter Operating at ZVS/ZCS,” 2022 13th National Conference with International Participation, Sofia, Bulgaria, 2022.
    [9] S. C. Moon and C. H. Chiu, “Hybrid-Mode PFM Control for LLC Resonant Converter,” IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 274-284, Jan. 2022.
    [10] X. Tang, Y. Xing, H. Wu, and J. Zhao, “An Improved LLC Resonant Converter with Reconfigurable Hybrid Voltage Multiplier and PWM- Plus-PFM Hybrid Control for Wide Output Range Applications,” IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 185-197, Jan. 2020.
    [11] X. Sun, X. Li, Y. Shen, B. Wang, and X. Guo, “Dual-Bridge LLC Resonant Converter With Fixed-Frequency PWM Control for Wide Input Applications,” IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 69-80, Jan. 2017.
    [12] L. Wang, H. Wang, B. Xue, and M. Zhou, “H5-Bridge-Based Single- Input–Dual-Output LLC Converter with Wide Output Voltage Range,” IEEE Transactions on Industrial Electronics, vol. 69, no. 7, pp. 7008- 7018, Jul. 2022.
    [13] P. Jia, T. Guo, X. Zhu, and T. Shao, “A Control Strategy for the Bidirectional LLC-L Converter to Extend the Gain Range Based on the Time Domain Analytical Model,” IEEE Transactions on Power Electronics, vol. 38, no. 4, pp. 4876-4893, Apr. 2023.
    [14] H. Chenliang, G. Zhigang, and J. Yalin, “A Novel Multi-Resonant DC- DC Converter with wide Input Voltage Range,” 2021 China Automation Congress, pp. 2133-2137, Beijing, China, Oct. 2021.
    [15] Q. Zhao, W. Liu, Y. Wang, D. Wang, and N. Wu, “A Novel Multiresonant DC-DC Converter with Wide Output-Voltage Range,” IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 5625-5638, Jun. 2020.
    [16] P. Zheng and J. Bauman, “High Efficiency Bidirectional LLC+C Resonant Converter with Parallel Transformers for Solar-Charged Electric Vehicles,” IEEE Transactions on Transportation Electrification, vol. 9, no. 1, pp. 1428-1442, Mar. 2023.
    [17] Y. Liu, H. Wu, Z. Ge, and G. Ji, “Magnetic Integration for Multiple Resonant Converters”, IEEE Transactions on Industrial Electronics, Vol. 70, No. 8, pp.7604-7614, Dec. 2023.
    [18] H. Wang and Z. Li, “A PWM LLC Type Resonant Converter Adapted to Wide Output Range in PEV Charging Applications,” IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 3791-3801, May 2018.
    [19] M. Shang and H. Wang, “A Voltage Quadrupler Rectifier Based Pulsewidth Modulated LLC Converter with Wide Output Range,” IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6159-6168, Nov.-Dec. 2018.
    [20] X. Wu, R. Li, and X. Cai, “A Wide Output Voltage Range LLC Resonant Converter Based on Topology Reconfiguration Method,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 1, pp. 969-983, Feb. 2022.
    [21] N. Zanatta, T. Caldognetto, D. Biadene, G. Spiazzi, and P. Mattavelli, “A Two-Stage DC-DC Isolated Converter for Battery-Charging Applications,” IEEE Open Journal of Power Electronics, vol. 4, pp. 343-356, 2023.
    [22] R. Pandey and B. Singh, “A Cuk Converter and Resonant LLC Converter Based E-Bike Charger for Wide Output Voltage Variations,” IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 2682- 2691, May-June 2021.
    [23] Q. Liu, Q. Qian, B. Ren, S. Xu, W. Sun, and L. Yang, “A Two-Stage Buck–Boost Integrated LLC Converter with Extended ZVS Range and Reduced Conduction Loss for High-Frequency and High-Efficiency Applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 727-743, Feb. 2021.
    [24] J. G. Yadav, Y. K. Yadav, and N. Kumar, “Mathematical Modelling & Simulation of Synchronous Buck Converter and Analysis of Its Simulation Results,” International Conference on IoT, Communication and Automation Technology, Gorakhpur, India, Jun. 2023.
    [25] A. Singh, K. Bharti, and N. Kumar, “Comparative Study between DC- DC Buck Converter and Zero Voltage Switching Buck Converter,” IEEE International Students' Conference on Electrical, Electronics and Computer Science, Bhopal, India, Feb .2024.
    [26] A. K. Rathore and V. R. Vakacharla, “A Simple Technique for Fundamental Harmonic Approximation Analysis in Parallel and Series– Parallel Resonant Converters,” IEEE Transactions on Industrial Electronics, vol. 67, no. 11, pp. 9963-9968, Nov. 2020.
    [27] HCPL-3120 Datasheet, Broadcom Inc, 2013.
    [28] dsPIC33CK256MP508 Datasheet, Microchip Technology Incorporated, 2020.
    [29] Ferroxcube 3C90 Datasheet, Ferroxcube Core, 2008.
    [30] CS343125 Datasheet, Chang Sung Corporation.

    無法下載圖示 校內:2029-07-05公開
    校外:2029-07-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE