簡易檢索 / 詳目顯示

研究生: 張孟詔
Zhang, Meng-Zhao
論文名稱: 電動載具用非接觸式感應饋電軌道︰ 載具側三埠式充電∕供電系統
Contactless Inductive Power Transmission Track for Electric Vehicles: Implementation of Vehicle-Side Tri-Port Charging/Powering System
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 68
中文關鍵詞: 非接觸式三埠式充電供電
外文關鍵詞: contactless, tri-port, charging, powering
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在提出應用於非接觸式感應饋電軌道之電動載具三埠式充電∕供電系統架構。主要特點為三埠式系統可將電能轉移作充電及供電,主要動作模式︰(1)非接觸式供電、(2)非接觸式充電。電動載具行駛於非接觸式感應饋電軌道上,電動載具由軌道以非接觸方式拾取電能作為電動載具動力來源,且可將多餘電能利用三埠架構對電動載具上之鉛酸電池充電。為有效提升電動載具充電速度,本文採用Reflex快速充電方式搭配雙向轉換器,並以單晶片作為整體控制核心。單獨測試三埠式系統,其供電模式下效率最高為81.86%。

    The purpose of this thesis is to implement vehicle-side tri-port charging/powering system. The main feature of the thesis is that it can save energy to battery or transfer power to output through tri-port system. There are two modes in tri-port system as below: (1) Contactless power supply and (2) Contactless power charge. While electric vehicle is on the contactless power inductive transmission track, electric vehicle can pick up power from track. Besides, battery on vehicle will be charged through tri-port system if secondary picks up too much power. To improve charging rate of the battery, the thesis proposes to use Reflex charging circuit with bidirectional converter and a programmable processor that is the core of the controller. The efficiency is up to 81.86 % in contactless power supply mode and duration of charge is about 35 minute in contactless power charge mode.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 2 1-3 研究方法 5 1-4 論文大綱 6 第二章 非接觸式饋電軌道系統 8 2-1 前言 8 2-2 常見非接觸式軌道 8 2-3 編織型非接觸式軌道 11 2-4 整體架構 13 2-5 三埠式充電∕供電系統 14 第三章 載具側三埠式充電∕供電系統分析 16 3-1 前言 16 3-2 載具側三埠式充電∕供電系統 16 3-3 雙向充放電轉換器分析與設計 20 3-3-1 降壓式轉換器分析 20 3-3-2 昇壓式轉換器分析 20 3-3-3 Reflex快速充電方式 22 3-3-4 雙向充放電轉換器 22 3-4 雙向全橋變流器分析 24 3-5 Tri-Port變壓器 28 3-6 降壓式轉換器設計 30 第四章 硬體電路規劃 31 4-1 前言 31 4-2 載具側三埠式充電∕供電系統電路架構 32 4-3 輸入端電路 32 4-3-1 選擇性諧振電容 33 4-3-2 模式判斷切換電路 34 4-4 電池端電路 35 4-4-1 雙向充放電轉換器 35 4-4-2 雙向充放電控制電路 37 4-4-3 雙向全橋變流器 38 4-4-4 雙向全橋控制電路 39 4-4-5 輔助電源電路 40 4-5 輸出端電路 41 4-5-1 降壓式轉換器控制電路 41 4-5-2 降壓式子電路 42 4-5-3 輸出端回授判斷電路 43 4-6 載具側三埠式系統動作流程 45 4-7 載具側三埠式充電∕供電系統設計流程 47 第五章 系統實驗結果 50 5-1 前言 50 5-2 系統規格與硬體實作 50 5-3 載具側三埠式充電∕供電系統實驗量測 53 5-4 電動載具用非接觸式感應饋電軌道系統實驗量測 58 第六章 結論與未來研究方向 61 6-1 結論 61 6-2 未來研究方向 62 參考文獻 63

    [1] X. Liu and S. Y. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, 2007.
    [2] E. S. Kim, S. I. Kang, K. H. Yoon, and Y. H. Kim, “A contactless power supply for photovoltaic power generation system,” in Proc. IEEE ACPE’08, 2008, pp. 1910-1918.
    [3] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, and J. Kawase, “Power transmission of a desk with a cord-free power supply,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3329-3331, 2002.
    [4] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental results on con¬tact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC’07, 2007, pp. 2779-2784.
    [5] T. Kojiya, F. Sato, H. Matsuki, and T. Sato, “Automatic power supply system to underwater vehicles utilizing non-contacting technology,” in Proc. IEEE OCEANS’04, 2004, vol. 4, pp. 2341-2345.
    [6] N. R. Cox, “A universal power converter for emergency charging of electric vehicle batteries,” in Proc. IEEE APEC’95, 1995, vol. 2, pp. 965-969.
    [7] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementa¬tion of low profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no.1, pp. 140-147, 2004.
    [8] J. M. Barnard, J. A. Ferreira, and J. D. Wyk, “Sliding transformers for linear contactless power delivery,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774-779, 1997.
    [9] G. A. Covic, G. Elliott, O. H. Stelau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. IEEE ICPST’00, 2000, vol. 1, pp. 79-84.
    [10] R. Laouamer, M. Brunello, and J. P. Ferrieux, “A multi-resonant con¬verter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON’97, 1997, vol. 2, pp. 792-797.
    [11] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, 2005.
    [12] N. H. Kutkut, D. M. Divan, D. W. Novotny, and R. Marion, “Design con¬sid¬erations and topology selection for a 120kW IGBT converter for EV fast charging,” in Proc. IEEE PESC’95, 1995, vol. 1, pp. 238-244.
    [13] R. Severns, E. Yeow, G. Woody, J. Hall, and J. Hayes, “An ultra-compact transformer for a 100 W to 120 kW inductive coupler for electric vehicle battery charging,” in Proc. IEEE APEC’96, 1996, vol. 1, pp. 32-38.
    [14] J. G. Hayes, “Battery charging systems for electric vehicles,” in Proc. IEE EV’98, 1998, pp. 4/1-4/8.
    [15] S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Coreless printed circuit board (PCB) transformers with multiple secondary windings for complementary gate drive circuits,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 431-437, 1999.
    [16] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contact¬less battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
    [17] L. Xun and S. Y. Hui, “Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202-2210, 2007.
    [18] L. Xun and S. Y. Hui, “Optimal design of a hybrid winding structure for planar contactless battery charging platform,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 455-463, 2008.
    [19] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmis¬sion system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
    [20] W. B. Burkett, P. Palisades, and R. V. Jackson, “Rapid charging of bat¬teries,” U. S. Patent 3,517,293, 1970.
    [21] Contactless power system, VAHLE Inc., 2000.
    [22] J. Lastowiecki and P. Staszewski, “Sliding transformer with long mag¬netic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, 2006.
    [23] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for Maglev applications,” in Proc. IEEE IAS’02, 2002, vol. 3, pp. 1586-1591.
    [24] P. Sergeant and A. V. D. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Electric Power Appl., vol. 2, pp. 1-7, 2008.
    [25] S. Adachi and E. Al, “Consideration of contactless power station with selective excitation to moving robot,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3583-3585, 1999.
    [26] J. M. Barnard, J. A. Ferreira, and J. D. Wyk, “Optimized linear contact¬less power transmission systems for different applications,” in Proc. IEEE APEC’97, 1997, vol. 2, pp. 953-959.
    [27] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-up for inductively coupled power transfer monorail system,” IEEE Trans., Magn., vol. 42, no. 10, pp. 3389-3391, 2006.
    [28] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IEEE IPEC’05, 2005, vol. 2, pp. 1133-1136.
    [29] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. IEEE ICIEA’07, 2007, pp.68-73.
    [30] J. Lastowiecki and P. Staszewski, “Sliding transformer with long mag¬netic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, 2006.
    [31] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
    [32] M. Ryu, Y. Park, J. Baek, and H. Cha, “Analysis of the contactless power transfer system using modeling and analysis of the contactless transformer,” in Proc. IEEE IECON’05, 2005, pp.1036-1042.
    [33] S. C. Mukhopadhyay, G. S. Gupta, and B. J. Lake, “Design of a contact¬less battery charger for micro-robots,” in Proc. IEEE IMTC’08, 2008, pp. 985-990.
    [34] K. Finkenzeller, RFID HANDBOOK. 2nd ed., Wiley, 2003.
    [35] W. Lim, J. Nho, B. Choi, and T. Ahn, “Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” in Proc. IEEE PESC’02, 2002, pp. 579-584.
    [36] C. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho, “Design of a contactless battery charger for cellular phone,” in Proc. IEEE APEC’00, 2000, vol. 2, pp. 769-773.
    [37] F. Sato, T. Nomoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966, 2004.
    [38] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, pp. 1943-1948, 2006.
    [39] H. Miura, S. Arai, F. Sato, H. Matsuki, and T. Sato, “A synchronous rectification using a digital PLL technique for contactless power supplies,” IEEE Trans. Magn., vol. 41, no. 10, pp. 3997-3999, 2005.
    [40] Jia-You Lee, Yu-Ming Chang, and Fang-Yu Liu, “A new UPS topology employing a PFC boost rectifier cascaded high-frequency tri-port converter,” IEEE Trans. Ind. Electron., vol. 46, no. 4, pp. 803-813, 1999.
    [41] P. Jain and H. Pinheiro, “High frequency triport UPS topologies for emerging fiber networks,” IEEE Trans. Ind. Electron., vol. 23, no. 1, pp. 505-512, 1998.
    [42] 鄭培璿,高頻快速充電電路策略之研究,國立台灣大學電機工程學系博士論文,2004年。
    [43] 黃俊盛,電動車用鉛酸電池快速充電策略之研究,國立彰化師範大學電機工程學系碩士論文,2001年。
    [44] 陳建任,具多鐵芯感應結構非接觸式油電混合車充電槳之研究,國立成功大學電機工程學系碩士論文,2009年。
    [45] 賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
    [46] 麥綺明,非接觸式感應充電技術應用於油電混合車充電槳之研究,國立成功大學電機工程學系碩士論文,2009年。
    [47] 張宇誠,具封閉型耦合結構非接觸式感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
    [48] 陳勝建,非接觸式編織型饋電軌道系統之研究,國立成功大學電機工程學系碩士論文,2009年。
    [49] 莊倍源,可攜式多媒體電子產品用非接觸型感應供電墊之研製,國立成功大學電機工程學系碩士論文,2009年。
    [50] 童子原,電動載具用非接觸式感應饋電軌道:高功率交流正弦激勵電源系統之研製,國立成功大學電機工程學系碩士論文,2010年。
    [51] 蘇哲彬,電動載具用非接觸式感應饋電軌道:交錯繞製式編織型陣列區塊感應耦合系統之研製,國立成功大學電機工程學系碩士論文,2010年。

    無法下載圖示 校內:2015-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE