簡易檢索 / 詳目顯示

研究生: 李浩賢
Lee, Ho-yin
論文名稱: 生醫應用之無線溫度感測節點
A CMOS Smart Wireless Thermal Sensing Node for Biomedical Application
指導教授: 羅錦興
Luo, Ching-hsing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 77
中文關鍵詞: 無線感測網路溫度感測器生醫應用
外文關鍵詞: wireless sensor network, thermal sensor, biomedical application
相關次數: 點閱:80下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個應用在生醫上的無線溫度感測節點,此系統主要可分為三個部份:讀取電路、溫度感測器和射頻2.4 GHz通訊系統。無線感測端主要是將所量取到的生醫訊號,經讀取電路和類比數位轉換器數位化後,再調變和升頻,以2.4 GHz的ISM 頻帶來傳送。當收集點收集到數個感測端所傳送的生醫訊號時,收集點會進行數據融合,再將融合後的數據傳送到系統端作數據分析及監控。以低功率短距離傳送的生醫訊號來說,相信未來可利用此系統來廣泛應用在生醫的監測上。
    在本論文中,分別設計的晶片有讀取電路、三角積分類比數位轉換器、溫度感測器,以及射頻2.4 GHz通訊系統的設計考量。一般工業上應用之讀取電路,以放大器、程式增益放大器、高通慮波器和低通濾波器的結合來完成,本論文其中提出一個功能相當於現時工業上所應用之讀取電路,卻省下了高通慮波器的硬體電路,不但可以省去高通慮波器功率消耗的部分,更可依不同的應用下來變化它的頻寬和增益,結果顯示,與現時工業上所應用之讀取電路來比較,大約可省下20%的功率消耗。溫度感測器利用了電晶體對溫度的線性特性,經過三角積分類比數位轉換器,透過微控制器以壓縮的方式傳出。量測結果分為工作模式和閒置模式,其功率消耗分別是807 μW和240 μW,平均的功率消耗為268.4 μW,在0度與80度之間,其不準確度在±0.1度以下,而在體溫(37 ± 5度),其不準確度在±0.05度以下,在低不準確度和低功率的消耗下,這是非常適合應用在人體以及生物醫學上。

    This thesis presents a wireless thermal sensor node for biomedical applications. The proposed system is composed of three parts, Readout Circuit, Thermal Sensor, and 2.4 GHz Wireless Communication System. The main function of wireless sensor node is detecting biomedical signals firstly. After readout circuit, analog signals will be converted to digital signals by ADC. Finally, the digital signals will be transmitted by 2.4 GHz ISM band after the modulation process. When the collector of sensor group receives the biomedical signals from different sensor nodes, the merge data circuit will merge the received data and then transmit the merged data to central system for analyzing and monitoring. According to low power and short distance transmission for biomedical applications, multiple applications could be detected in the same time. The system will be suitable for biomedical monitoring applications in the future.
    In this thesis, we designed chips of readout circuit, sigma-delta modulator, and thermal sensor, and discuss the consideration of 2.4 GHz Wireless Communication System. A general readout circuit consists of a charge amplifier, a program gain amplifier, a high pass filter, and a low pass filter. The proposed readout circuit has the same function without high pass filter. This design not only reduces the power consumptions by high pass filter, but also controls the bandwidths and gains for different applications. The comparison with previous work shows the power consumption was reduced about 20%. The principle of thermal sensor is using the transistors that are highly sensitive devices with linear characteristic and are readily integrated on the CMOS silicon chip. After integrating by sigma-delta modulator, the temperature values would be transmitted by transmitter after compressing. The power consumption is 807 μW or 240 μW for work mode or sleep mode and the average power consumption is 268.4μW. As a result, in the range of 0 oC to 80 oC C or body temperature (37 ± 5 oC), the inaccuracy is less than ± 0.1 oC or ± 0.05 oC respectively with one-point calibration after packaging. Thus, the very low inaccuracy and power consumption of the sensing chip in the human body temperature range renders the proposed thermal detection system suitable for biomedical application.

    Abstract (Chinese) I Abstract (English) III Acknowledgments V Contents VI List of Figures IX List of Tables XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of Dissertation 3 Chapter 2 Review of Wireless Sensor Network 5 2.1 Previews of Wireless Sensor Network 5 2.1.1 Zigbee 7 2.1.2 Wibree 8 2.1.3 The Wireless Sensor Network in Healthcare Monitoring Application 8 2.2 System Description 11 2.3 Sensor Node 12 2.3.1 Sensor 14 2.3.2 Readout Circuit System 15 2.3.3 Sigma-Delta Modulator (SDM) 15 2.3.4 Smart Thermal Sensor 16 2.3.5 Communication System 16 Chapter 3 System Architecture and Design 18 3.1 Sensors 18 3.2 Readout Circuit System 21 3.2.1 Without Highpass Filter 21 3.3 Sigma-Delta Modulator 25 3.3.1 Low Power SDM for Biomedical Application 26 3.3.1.1 Principle and Design 26 3.3.1.2 Operation Amplifier and Common Mode Feedback 29 3.3.1.3 Comparator 31 3.3.1.4 1-bit DAC 32 3.4 Smart Thermal Sensor 33 3.4.1 Block Diagram and Implementation of Thermal Sensing Chip 33 3.4.2 Thermal Sensing Chip System Design 34 3.4.2.1 VBE Sensor 35 3.4.2.2 Sigma-Delta Modulator 36 3.4.2.3 Switch Capacitor 39 3.4.2.4 CMOS Bandgap Reference Voltage Generator 41 3.4.2.5 MCU and Calibration 41 Chapter 4 Measurement Results and Discussions 48 4.1 Readout Circuit System without Highpass Filter 48 4.2 Sigma-Delta Modulator 50 4.3 Smart Thermal Sensor 51 4.4 Discussions 56 4.4.1 Readout Circuit 56 4.4.2 Sigma-Delta Modulator 56 4.4.3 Smart Thermal Sensor 56 4.4.4 Communication and Network System 57 Chapter 5 Conclusions and Further Works 58 5.1 Conclusions 58 5.2 Future Works 59 References 62 Appendix 68 A. Communication System 68 A.1 2.4 GHz Communication System Architecture 68 A.2 Circuit Implementation 69 Vita 74 Publication 75

    [1] C. C. Enz, A. El-Hoiydi, J. D. Decotignie, V. Peiris, “WiseNET: an ultralow-power wireless sensor network solution”, IEEE Computer, vol. 37, issue 8, Aug. 2004, pp.62 - 70.
    [2] K. Romer; F. Mattern, “The Design Space of Wireless Sensor Networks". IEEE Wireless Communications Vol. 11, Issue 6, pp: 54 - 61, Dec.2004.
    [3] H. Thomas, "Sensornetworks". GFDL Wireless Sensor Network textbook, 2006.
    [4] H. P. Le, K. Shah, J. Singh and A. Zayegh, “Design and implementation of an optimised wireless pressure sensor for biomedical application, Volume 48, Number 1 pp: 21 - 31
    [5] S. Hadim, M. Nader (2006). “Middleware Challenges and Approaches for Wireless Sensor Network”, IEEE Distributed Systems Online 7 (3). art. no. 0603 - 3001.
    [6] M. H. Jin, R. G. Lee, C. Y. Kao, Y. R. Wu, D. F. Hsu, T. P. Dong, and K. T. Huang, “Sensor Network Design and Implementation for Health Telecare and Diagnosis Assistance Applications”, in Con. Rec. 2005 IEEE Int. Conf. on Parallel and Distributed Systems, Vol.2, pp:407 - 41.
    [7] I. E. Lamprinos, A. Prentza, E. Sakka, D. Koutsouris, “Energy-efficient MAC Protocol for Patient Personal Area Networks”, in Conf. Rec. 2005 IEEE Int. Conf. Engineering in Medicine and Biological Society, pp:3799 - 3802
    [8] J. G. Webster, Medical Instrumentation Application and Design. New York: Wiley, 1998, pp. 10 - 11.
    [9] H. L. Ren; M. Q. H. Meng, X. Chen; “Physiological information Acquisition through Wireless Biomedical Sensor Networks”, in Conf. Rec. 2005 IEEE Int. Conf. on Information Acquisition, pp: .
    [10] S. L. Chen, H. Y. Lee, C. A. Chen, C. C. Lin, and C. H. Luo, “A Wireless Body Sensor Network System for Healthcare Monitoring Application”, IEEE Biomedical Circuits and System Conference, Montreal, Canada, 27 - 30 Nov., 2007.
    [11] S. L. Chen, H. Y. Lee, C. A. Chen, H. Y. Huang, and C. H. Luo, “Wireless Sensor Network System by Separating Control and Data Path (SCDP) for Bio-medical Applications”, European Microwave Conference 2007 (EuMC’07, ), Munich, Germany, 8 - 12 Oct., 2007.
    [12] S. L. Chen, J. M. Jou, C. M. Sun, Y. C. Wu, H. Yang, H. Y. Su, “Reconfigurable Processor Core Design for Network-on-a-Chip”, in Conf. Rec. 2004 Int. Computer Symposium.
    [13] T. Arslan, N. Haridas, E. Yang, A. T. Erdogan, N. Barton, A. J. Walton, J. S. Thompson, A. Stoica, T. Vladimirova, K. D. McDonald-Maier, W.G.J. Howells, “ESPACENET: A Framework of Evolvable and Reconfigurable Sensor Networks for Aerospace - Based Monitoring and Diagnostics”, in Conf. Rec. 2006 First NASA / ESA Conference on Adaptive Hardware and Systems (AHS'06), pp. 323 - 329.
    [14] H. Y. Lee, S. L. Chen, C. A. Chen, and C. H. Luo, “Wireless Thermal Sensor Network with Adaptive Low Power Design”, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’ 07), Lyon, France, 23 - 26 Aug., 2007 .
    [15] “Zigbee Alliance”, http://www.zigbee.org.
    [16] M. Honkanen, A. Lappetelainen, K. Kivekas, “Low end extension for Bluetooth”, Radio and Wireless Conference, 2004 IEEE, 19 - 22 September 2004.
    [17] “Bluetooth rival unveiled by Nokia”, http://news.bbc.co.uk/2/hi/technology/5403564.stm, 4th October, 2006.
    [18] “Wibree Bluetooth press release”, http://www.wibree.com, 12th June, 2007.
    [19] “Nokia’s Wibree and the Wireless Zoo”, http://www.tfot.info, by Iddo Genuth, The Future of Things (TfoT) online magamine, 16th Nov., 2006.
    [20] “Nordic Semiconductor becomes a member of the open Wibree industry initiative”, http://www.wibree.nordicsemi.no, nordic Semiconductor press release, 3rd October, 2006.
    [21] Chen-Ming Hsu, Ho-Yin Lee, Ching-Hsing Luo, “The 2.4GHz Wireless Communication System for Biomedical Signals Transmit in Healthcare Monitoring System”, Asia-Pacific Conference of Transducers and Micro-Nano Technology (APCOT’06), Singapore, 25-28 Jun., 2006.
    [22] M. Koyama, T. Arai, H. Tanimoto, and Y. Yoshida, “A 2.5-V Active Low-Pass Filter Using All npn Gilbert Cells with a 1-Vp-p Linear Input Range”, IEEE J. Solid-State Circuits, 1993, 28, pp.1246-1253.
    [23] N. Lee, M.D., D. Hui, M.D., A. Wu, M.D., P. Chan, M.D., P. Cameron, M.D., G. M. Joynt, M.D., A. Ahuja, M.D., M. Y. Yung, B.Sc., C.B. Leung, M.D., K.F. To, M.D., S.F. Lui, M.D., C.C. Szeto, M.D., S. Chung, M.D., and J. J.Y. Sung, M.D., “A Major Outbreak of Severe Acute Respiratory Syndrome in Hong Kong”, The New England Journal of Medicine, vol. 348, no. 20, pp.1986 - 1994, May 2003.
    [24] T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 1998.
    [25] D. Barrettino, M. Graf, H. S. Wan, K. U. Kirstein, A. Hierlemann, H. Baltes, “Hotplate-Based Monolithic CMOS Microsystems for Gas Detection and Material Characteri- zation for Operating Temperatures up to 500 C”, IEEE J. Solid-State Circuits, SC, vol.SC-39, issue 7, pp.1202 - 1207, July 2004.
    [26] M. Schroter, D. J. Walkey, “Physical modeling of lateral scaling in bipolar transistors”, IEEE J. Solid-State Circuits, vol. 31, issue 10, pp.1484 - 1492, October 1996.
    [27] G. Kaltsas, A. A. Nassiopoulos, A. G. Nassiopoulou, “Characterization of a silicon thermal gas-flow sensor with porous silicon thermal isolation”, IEEE Sensors J., vol. 2, issue 5, pp.463 - 475, October 2002.
    [28] A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output”, IEEE J. Solid-State Circuits, vol. 31, issue 7, pp.933 - 937, July 1996.
    [29] P. Krummenacher and H. Oguey, “Smart temperature sensor in CMOS technology”, Sensors and Actuators A: Physical, vol. 22, issue 1-3, pp.636 - 638, June 1990.
    [30] R. A. Blauschild, P. A. Tucci, R. S. Muller, and R.G. Meyer, “A new NMOS temperature-stable voltage reference”, IEEE J. Solid-State Circuits, vol. SC-13, pp.767 - 774, December 1978.
    [31] H. J. Song and C. K. Kim, “A temperature-stabilized SOI voltage reference based on threshold voltage difference between enhancement and depletion NMOSFET’s”, IEEE J. Solid-State Circuits, vol. SC-28, pp. 671 - 677, June 1993.
    [32] Y. P. Tsivids and R. W. Ulmer, “A CMOS voltage reference”, IEEE J. Solid-State Circuits, vol.SC-13, pp.774-778, Dec. 1978.
    [33] M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6-μm CMOS”, IEEE J. Solid-State Circuits, vol. SC-33, pp. 1117 - 1122, July 1998.
    [34] H. Banba, H. Shiga, “A CMOS bandgap reference circuit with sub-1-v operation”, IEEE J. Solid-State Circuits, vol.34, no.5, pp.670 - 674, May 1999.
    [35] K.E. Kujik, “A precision reference voltage source”, IEEE J. Solid-State Circuits,vol. SC-8, pp. 222 - 226, June 1973.
    [36] G. C. M. Meijer, G. Wang, and F. Fruett, “Temperature sensors and voltage references implemented in CMOS technology”, IEEE Sensors J., vol. 1, issue 3, pp. 225 - 234, October 2001.
    [37] M. A. P. Pertijs, G. C. M. Meijer, and J. H. Huijsing, “Precision temperature measurement using CMOS substrate pnp transistors”, IEEE Sensors J., vol.4, no.3, pp. 294 - 300, June 2004.
    [38] M. A. P. Pertijs, A. Niederkorn, X. Ma, B. McKillop, A. Bakker and J. H. Huijsing, “A CMOS Smart Temperature Sensor with a 3σ Inaccuracy of ± 0.5 oC from - 50 oC to 120 oC”, IEEE J. Solid-State Circuits, vol. 40, no. 2, February 2005.
    [39] M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS Smart Temperature Sensor with a 3σ Inaccuracy of ± 0.1 oC from - 55 oC to 125 oC”, IEEE J. Solid-State Circuits, vol.40, no.12, December 2005.
    [40] A. Bakker and J. H. Huijsing, High-accurcy CMOS smart temperature sensors, Kluwer Academic Publishers, 2000.
    [41] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of OP-amp imperfection: Autozeroing, Correlated Double Sampling, and Chopper stabilization”, Proc. IEEE, vol. 84, issue 11, pp. 1584 - 1614, November 1996.
    [42] G. C. M. Meijer, Analog Circuit Design, Kluwer Academic Publishing, 1996, pp. 243 - 268.
    [43] J. Chang, A. A. Abidi, C. R. Viswanathan, “Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures”, IEEE Transactions Electron Devices, 1994, 41, (11), pp. 1965 – 1971.
    [44] A. Veeravalli, E. Sanchez-Sinencio, J. Silva-Martinez, “Transconductance amplifier structures with very small transconductances: a comparative design approach”, IEEE J. Solid-State Circuits, 2002, 37, (6), pp. 770 - 775.
    [45] Guessab S, Benabes P and Kielbasa R: A passive delta-sigma modulator for low-power applications. IEEE Circuits and Systems 2004; 3: 295 - 298
    [46] S. W. Leung and Y. T. Zhang, Digitization of electrocardiogram (ECG) signals using delta-sigma modulation. IEEE Engineering in Medicine and Biology Society 1998; 4: 1964 -1966.
    [47] J. G. Webster, Medical Instrumentation Application and Design. New York: Wiley, 1998, pp. 259.
    [48] H. Y. Lee, C. M. Hsu, S. C. Huang, Y. W. Shih, and C. H. Luo, “Designing low power of Sigma Delta Modulator for Biomedical Application”, Journal Biomedical Engineering Applications Basis and Communications, 2005(August), 17: 181 - 185.
    [49] C. R. T. de Mori, P. C. Crepaldi and T. C. Pomenta, “ A 3-V 12-bit second order sigma-delta modulator design in 0-8 μm CMOS,”Proc. of the 14th Symp. on Intergrated Circuits and Systems Design, 124 - 129, 2001.
    [50] L. Samid, Y. Manoli, Micro Power Continuous-Time Sigma Delta Modulator. Conference on European Solid-State Circuits 2003; 165 - 168.
    [51] S. R. Norsworthy, R. Schreier, and G. C. Temes: Delta-sigma converters: theory, design and simulation. In: IEEE Press, New York, 1997; 223 - 234.
    [52] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P.Cusinato and A. Baschirotto, “ Behavioral modeling of switched-capacitor sigma-delta modulators,” IEEE Trans. Circuits Sys., 50: 352 - 364, 1998.
    [53] K. Gulati and H. S. Lee, “ A high-swing CMOS telescopic operational amplifier,” IEEE J. Solid-State Circuit, 33: 2010 - 2019, 1998.
    [54] A. Yukawa, “ A CMOS 8-bit high-speed A/D converter,” IEEE J. Solid-State Circuit, SC-20: 775 - 779,1985.
    [55] H. Fujisaka, R. Kurata, M. Sakamoto, M. Morisue, Bit-stream signal processing and its application to communication systems. IEE Circuits, Devices and Systems 2002; 149: 159 - 166.
    [56] B. Razavi, Design of analog CMOS integrated circuit. In: McGraw-Hill, New York, 2001.
    [57] H. Y. Lee, C. M. Hsu and C. H. Luo; “CMOS thermal sensing system with simplified circuits and high accuracy for biomedical application”, IEEE International Symposium on Circuits and Systems, Page(s):4 pp, May 2006.
    [58] H. Y. Lee, C. M. Hsu, S. C. Huang, Y. W. Shih and C. H. Luo, “Designing low power of Sigma Delta Modulator for Biomedical Application”, Biomedical Engineering Applications Basis and Communications, vol. 17, pp. 181 - 185, August 2005.
    [59] G. Wang and G. C. M. Meijer, “The temperature characteristics of bipolar transistors fabricated in CMOS technology”, Sensors and. Actuators A: Physical, vol. 87, pp. 81 - 89, September 2000.
    [60] A. Hastings, the art of analog layout, Prentice Hall, 2005.
    [61] D. A. Huffman, “A method for the construction of minimum redundancy codes”, In the Proceedings of the Institute of Radio Engineers 40 (1951), pp. 1098 - 1101.
    [62] M. W. Baker, T. K. - T. Lu, C. D. Salthouse, J. - J. Sit, S. Zhak., R. Sarpeshkar, “A 16-channel Analog VLSI Processor for Bionic Ears and Speech-Recognition Front Ends”, IEEE Custom Integrated Circuits Conference, San Jose, California, 2003, pp.521 - 526.
    [63] (2003, May) SMT160-30 Data Sheet. Smartec B.V. [Online]. Available: http://www.smartec.nl.
    [64] (2004, Aug) ADT7301 Data Sheet, Analog Devices Inc. (2004, Aug). [Online]. Available: http://www.analog.com.
    [65] (2005, Mar) LM92 Data Sheet. National Semiconductor Corporation. [Online]. Available: http://www.national.com.
    [66] (2005, May) DS1626 Data Sheet. Maxim Int. Products. [Online]. Available: http://www.maxim-ic.com.
    [67] J. Ottenbacher, S. R¨omer, C. Kunze, U. Großmann, W. Stork, Integration of a bluetooth based ECG system into clothing, in: Proceedings of the Eighth IEEE International Symposium on Wearable Computers (ISWC’04), Arlington, VA, October 31–November 3, 2004, pp. 186 - 187.
    [68] A. Zolfaghari and B. Razavi, A low-power 2.4GHz transmitter/receiver CMOS IC, IEEE J. of Solid-State Circuits, vol.38, NO.2, pp.176 - 183, Feb 2003.

    下載圖示 校內:2010-01-09公開
    校外:2010-01-09公開
    QR CODE