簡易檢索 / 詳目顯示

研究生: 邱景裕
Chiu, Ching-Yu
論文名稱: 運用超重力法結合熱泵對氨氮氣提的成效評估 - 以K公司為例
Benefit Evaluation on Air Stripping of Ammonia from Wastewater by Using High Gravity Method with Heat Pump – K Company as Case Study
指導教授: 陳澤生
Chen, Tse-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程管理碩士在職專班
Engineering Management Graduate Program(on-the-job class)
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 75
中文關鍵詞: 氨氮氣提吹脫熱泵超重力旋轉填充床機械蒸氣再壓縮
外文關鍵詞: Ammonia, Air Stripping, Heat Pump, High Gravity, Rotating Packed Bed, Mechanical Vapor Recompression
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著經濟發展的快速成長與工業化進程的不斷加快,日益嚴峻的環境污染問題已成為當下最亟待解决的難題之一。在生活和工業生產過程中,產生的各類型工業廢水污染已成為台灣水源污染的主要原因之一。其中若含有高濃度之有機物與氮類污染物的廢水,未經過妥善處理而排入自然水體,產生的高濃度氨氮廢水由於排放量大、濃度高、成份複雜不僅會致使水體富營養化更會大量消耗水中之溶氧,亦會直接對於水中生物造成毒性影響,致使大量水中生物死亡,嚴重影響人體健康和社會經濟的發展。
    目前已知的各項氨氮廢水處理技術中,就高濃度氨氮廢水處理而言大多存在著脫氮效率不高、產生二次污染等問題,傳統之處理方式並無法有效將高濃度氨氮污染物去除,使之達到符合放流法規氨氮的30mg/L排放標準。故本研究引用新型聯合處理工法—『超重力氣提吹脫結合MVR熱泵』針對高濃度氨氮廢水的去除效率進行深入研究。本研究分兩階段,以某金屬材料供應公司產生的氨氮廢水為研究對象,濃度在10000~20000mg/L。第一階段以氣提吹脫驗證,利用吹脫法脫氮高、操作方便、處理成本較低等特點進行實驗分析,考察了吹脫法處理高濃度氨氮廢水的影響因素,得出最適宜的反應條件:在 pH=11,溫度為40℃,吹脫時間1h,氣液比為 2500 的實驗條件下,脫氮率近乎89.5%。第二階段在此基礎上結合超重力技術强化質傳過程的優勢來對廢水進行深度處理,通過超重力法研究發現:在 pH=13,溫度 50℃,氣液比 2000的實驗條件下,可將濃度為 5000mg/L 的氨氮廢水降到 80mg/L,脫氮率達到98.4%,幾乎可滿足放流排放要求。此外,為避免脫氮過程中產生二次污染,後續將此項新型聯合處理工法設置有氨氮回收與資源化系統,既能保護環境,實現變廢為寶,產生良好的經濟效益,使廢水的處理成本大大降低,實現了高效、經濟、環保的目標。

    With the rapid growth of economic development and the accelerating industrialization process, the increasingly serious environmental pollution problem has become one of the most urgent problems to be solved. In the process of living and industrial production, the pollution of various types of industrial wastewater has become one of the main causes of water pollution in Taiwan. If the wastewater contains high concentrations of organic matter and nitrogen pollutants is discharged into natural water bodies without proper treatment. Because the high concentration of ammonia nitrogen wastewater with large emissions, high concentration and complex composition generated will not only cause eutrophication of water bodies and dissolved a large amount of dissolved oxygen in the water. It will also directly cause toxic effects on aquatic organisms and causing a large number of aquatic organisms to die, seriously affecting human health and socio-economic development.
    Among the various known ammonia nitrogen wastewater treatment technologies, most of the high-concentration ammonia-nitrogen wastewater treatments have problems such as low nitrogen removal efficiency and secondary pollution. The traditional treatment method cannot effectively remove high-concentration ammonia nitrogen pollutants. To achieve a 30mg/L emission standard that meets the ammonia nitrogen requirements of the release regulations. Therefore, this study cites a new joint treatment method - "High-Gravity stripping combined with MVR heat pump" to conduct in-depth research on the removal efficiency of high-concentration ammonia-nitrogen wastewater. The research is divided into two stages, with the ammonia nitrogen wastewater produced by a metal material supply company as the research object, the concentration is 10000~20000mg/L. The first stage is verified by stripping and stripping, and the experimental analysis is carried out by using the characteristics of high denitrification, convenient operation and low processing cost.
    The influencing factors of the high concentration ammonia nitrogen wastewater by the stripping method were investigated, and the most suitable reaction conditions were obtained. Under the experimental conditions of pH=11, temperature 40 °C, stripping time 1 h, gas-liquid ratio 2500, the denitrification rate was almost 89.5%. On the basis of this, the second stage combines the advantages of the super-gravity technology to enhance the quality of the mass transfer process to further treat the wastewater. It is found by the method of High-Gravity: under the experimental conditions of pH=13, temperature 50 °C and gas-liquid ratio 2000. The ammonia nitrogen wastewater with a concentration of 5000 mg/L was reduced to 80 mg/L, and the denitrification rate reached 98.4%, which almost met the discharge requirement. In addition, in order to avoid secondary pollution during the denitrification process, the new combined treatment method is followed by an ammonia nitrogen recovery and resource system, which can not only protect the environment, but also turn waste into treasure, generate good economic benefits, and make wastewater. The processing cost is greatly reduced, achieving the goal of high efficiency, economy and environmental protection.

    摘要 I Extended Abstract II 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 中英文縮寫對照表 XIX 第1章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 3 1-3 研究範圍與限制 5 1-4 研究流程 6 第2章 文獻探討 7 2-1 前言 7 2-2 氨氮廢水的危害 7 2-3 氨氮的物理化學性質 9 2-4 各類型濃度氨氮廢水的處理技術 11 2-4-1 逆滲透法 12 2-4-2 離子交換法 14 2-4-3 生物法 15 2-4-4 氣提法 18 2-5 機械蒸氣再壓縮的基本概念 19 2-6 熱泵系統處理氨氮的原理及構造 20 2-7 超重力場的基本概念 22 2-7-1 超重力場技術的突破 23 2-7-2 超重力場技術的特點 24 2-7-3 超重力場技術的優勢與應用 26 2-8 本章小結 28 第3章 研究資料與方法 29 3-1 研究架構 29 3-1-1 氣提吹脫原理 29 3-1-2 超重力因子(β)原理說明 30 3-1-3 試驗水質狀況 32 3-2 氣提吹脫氨氮試驗研究 35 3-2-1 試驗藥品與儀器說明 35 3-2-2 實驗裝置與試驗步驟 36 3-3 氣提吹脫實驗結果與討論 37 3-4 超重力氣提氨氮試驗研究 39 3-4-1 試驗藥品與儀器說明 39 3-4-2 實驗配置與試驗步驟 40 3-5 超重力實驗結果與討論 42 3-5-1 pH對氨氮脫除效果的影響 42 3-5-2 溫度對氨氮脫除效果的影響 44 3-5-3 氣液比對氨氮脫除效果的影響 45 3-5-4 填充床轉速對氨氮脫除效果的影響 46 3-5-5 廢水氨氮初始濃度對脫氮效率的影響 48 3-6 本章小結 49 第4章 研究分析與結果 51 4-1 製程氨氮廢水說明 51 4-2 模廠試驗推估 54 4-2-1 氨氮廢水處理規劃 54 4-2-2 氨氮廢水樣品之實際測試結果 55 4-2-3 氨氮廢水產製資源物建議 56 4-3 建置成果 59 4-3-1 超重力結合MVR處理技術流程 59 4-3-2 主要處理系統技術設計 61 4-4 設備運行結果 62 4-5 投資成本與效益分析 63 4-5-1 工程建設投資成本 63 4-5-2 現場裝置狀況 65 4-5-3 效益分析 65 4-6 本章小結 69 第5章 結論與建議 70 5-1 研究結論 70 5-2 未來研究建議 71 參考文獻 73

    中文部份
    1. 王儷宮(2009),電子產品電鍍廢能廢水回收效益分析:以T公司為例,清雲科技大學國際企業管理研究所碩士班論文,桃園,台灣。
    2. 呂詠哲(2014),以旋轉填充床回收水中氨氮之研究,國立台北科技大學化學工程研究所碩士論文,台北,台灣。
    3. 段紀義(2012),狹點結合熱泵探討工業能源再利用,國立屏東科技大學環境工程與科學系所博士班論文,屏東,台灣。
    4. 祝貴兵、彭永臻、王淑莹、崔有為、于德爽與孫曉杰(2003),低溫下混有冲廁海水的污水生物處理,中國给水排水,第z1期,頁5~9,哈爾濱,中國。
    5. 許玲榕、林佳璋(2010),超重力技術發展與應用,科儀新知第175期:頁31 - 38,台北,台灣。
    6. 徐毓蘭、巫源章、林畢修平、李宜忠與劉照國(2003),工業廢水回收至製程再利用之高效率生/物化複合處理技術,工業污染防治,第88期,頁17~37,台北,台灣。
    7. 陳萍澐(2015),含高鹽度石化廢水氨氮之硝化及脫硝研究,國立中山大學環境工程研究所碩士論文,高雄,台灣
    8. 廖南維、劉偉裕與林志高(2016),新穎厭氧氨氧化生物除氮技術動態,中華技術,第109期,頁134~143,台北,台灣。
    9. 蔡志楹(2013),以旋轉填充床氣提水中氨氮之研究,國立台北科技大學化學工程研究所碩士論文,台北,台灣。
    10. 鄭幸雄與陳賢焜(2013),氮系廢水處理技術專題研究,台南,台灣。
    英文部份
    1. Bonsen, E. M., Schroeter, S., Jacobs, H. and Broekaert, J. A. C. (1997), Photocatalytic degradation of ammonia with TiO2 as photocatalyst in the laboratory and under the use of solar radiation, Chemosphere, vol. 35, pp. 1431-1445, Germany.
    2. Focht, D.D. and Verstrate, W. (1977), Biochemical ecology of nitrification and denitrification, Adv. Microbial Ecol. 1, pp. 135-214, USA.
    3. Guo, F., Zheng, C., Guo, K., Feng, Y. and Gardner, N.C. (1997), Hydrodynamics and mass transfer in cross-flow rotating packed bed, Chem. Eng. Sci., vol. 52, pp. 3853-3859, USA.
    4. Miranda, V. and Simpson, R. (2005), Modelling and simulation of an industrial multiple effect evaporator: tomato concentrate, Journal of Food Engineering, Vol. 66, pp. 203-210, USA.
    5. Reynolds, T.D., and Richards P.A. (1996), Unit operations and processes in environmental engineering, 2nd, PWS Publishing Company, pp. 330-331, England.
    6. Wright, J. M., Lindsay, W. T. J. and Druga, T. R. (1961), The behavior of electrolytic solutions at elevated temperatures as derived from conductance measurements, USAEC Comm. R&D report, vol. 204, pp. 36-67, GBR.
    網站部份
    1. 百度百科網站(2009),「旋轉填充床專區」
    https://baike.baidu.com/item/%E6%97%8B%E8%BD%AC%E5%A1%AB%E5%85%85%E5%BA%8A/5337308
    最後瀏覽日:2018 年12 月9 日
    2. 維基百科網站(2011),「氨專區」
    https://zh.wikipedia.org/zh-tw/%E6%B0%A8
    最後瀏覽日:2018 年12 月9 日

    無法下載圖示 校內:2024-05-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE