| 研究生: |
王俊傑 Wang, Chun-Chieh |
|---|---|
| 論文名稱: |
利用奈米複合絕緣層應用於有機薄膜電晶體之探討 Investigation of organic thin-film transistor based on nanocomposite dielectrics |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 207 |
| 中文關鍵詞: | 奈米複合材料 、有機薄膜電晶體 、絕緣層 |
| 外文關鍵詞: | nanocmoposite, organic thin-film transistor ( OTFTs), dielectric |
| 相關次數: | 點閱:117 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於低溫、可撓曲和低製作成本的考量,有機薄膜電晶體成為平面顯示器的新選擇。這些電晶體可以應用在陣列式並製作出液晶螢幕、有機發光二極體、電子紙等平面顯示器。因應有機薄膜電晶體低操作電壓、高輸出電流的需求,本篇論文主要是研究與探討將高介電常數的奈米複合材料作為有機薄膜電晶體的絕緣層。利用表面修飾過的奈米二氧化鈦來製作出高品質可以符合溶液製程的高分子/陶瓷介電複合材料以減少漏電流密度並有效的提升介電常數。磷酸根離子可以在鈦離子的表面形成一種強力且緊密的覆蓋率,以作為在奈米粉體表面的分散劑。然而為了克服漏電流的問題,我們採用兩種表面修飾技術:增加修飾層和化學機械研磨藉由金屬/絕緣層/金屬的MIM結構量測其介電特性,並控制奈米複合絕緣層的表面形貌,來解決漏電流的問題,並了解表面修飾工程對奈米複合絕緣層的介電特性與表面形貌之影響,包含了解平整度與漏電流相關性。本研究藉由改變其奈米粉體的含量並且以表面修飾技術改善奈米複合絕緣層的表面特性得到高介電常數且低漏電流(<10-10A/cm2)的絕緣層以應用在有機薄膜電晶體上。
由於絕緣層對有機薄膜電晶體的特性扮演著重要的角色,除了量測奈米複合材料介電特性,在本論文的後半部也搭配五苯環製作成有機薄膜電晶體並測量其電性。我們也發現這個新穎的奈米複合材料具有適合應用在有機薄膜電晶體絕緣層的潛力。首先由於介電常數的提升其臨界電壓也隨著降低,且在表面修飾的工程後,漏電流控制得當後,元件的電流開關比大幅的改善且其次臨界擺幅也由於介面缺陷減少而降低。此外由於五苯環的薄膜對有機薄膜電晶體的應用和沉積時的條件與絕緣層的特性有密切的關係,特別是絕緣層表面形貌會影響到五苯環的結構特性。由於有機薄膜電晶體是底閘極結構,載子傳輸路徑主要在五苯環和絕緣層介面間。我們發現奈米複合絕緣層有低表面能可以增加五苯環微結構初期結晶的緊密度,得到更好的覆蓋率,可以增加其載子移動率。而平整的絕緣層表面則可以降低載子在傳輸時產生的散射現象,並有效提升有機薄膜電晶體的電性。另外我們提出五苯環在奈米複合絕緣層上的成長機制,由於低表面能減少分子間的作用力,可以依據Volmer-Weber mode的成長模式形成緊密的島狀結構。高介電常數奈米複合絕緣層的有機薄膜電晶體元件得到不錯次臨界擺幅(0.50 V/dec.),降低其臨界電壓(<-5 V),改善電流開關比(~108)並得到不差的載子移動率(0.62 cm2V-1s-1)。
Organic thin-film transistors (OTFTs) can be competitive candidates for existing and novel TFT applications that require structural flexibility, low processing temperature, and low cost. Such applications include the switching devices of active matrix for flat panel displays based on liquid crystal pixels, organic light emitting diodes (OLEDs), or electronic papers. For low operation voltage and high driving current of organic thin-film transistors, this thesis describes the performance of OTFT devices with high-K nanocomposite was conducted as the gate dielectric. The surface modification of titanate dioxide (TiO2) nanoparticles and their application to high-quality, solution-processable polymer/ceramic dielectric nanocomposites reduced the leakage current density and significantly enhanced the dielectric constant. Phosphonic acid-based ligands were found to yield a high surface coverage and robust surface modification on the surface of TiO2 nanoparticles. The dielectric properties of the nanocomposites were examined by fabricating metal/insulator/metal capacitors. In our study, there are two methods were used to optimize the surface of high permittivity nanocomposites for maximum extractable energy, adding a surface-modified layer and chemical-mechanical polishing, to control the surface morphology of the nanocomposite dielectric and leakage current. On the other hand, the correlation of surface charactristics and leakage current will be disscused in this thesis. The dielectric properties of the nanocomposites with various nanoparticle volume fraction were fabricated by surface modifying engineering on the nanocomposite dielectric; a nanocomposite with a high dielectric constant and low leakage current (<10-10 A/cm2) were obtained to use as gate dielectric of OTFT.
The gate dielectric plays an important role in determining the characteristics of pentacene films. In the later half paragraph of this thesis, organic thin-film transistors were fabricated with pentacene and their electrical performance was also characterized. The nanocomposite materials presented in this study are potentially useful as dielectrics for gate insulators in OTFTs. Firstly, because of the increased dielectric constant, low leakage current and good interface after surface modifying engineering significantly improved the current on/off ratio, and reduce threshold voltage, subthreshold voltage and hysteresis effect. The characteristics of pentacene films for OTFT applications are closely related to the deposition parameters and gate dielectric properties, especially the morphology of dielectric and structural properties of pentacene films, including the roughness and the surface wetting properties of the gate dielectric. Due to the OTFTs with bottom gate structure, the path of carriers transport is the interface of pentacene and dielectric. A low surface energy significantly improved the crystalline microstructure of pentacene first layer with better coverage and enhanced the mobility of an OTFT. The low surface energy of the nnaocomposite gate dielectrics minimized the interaction between the pentacene and nanocomposite gate dielectric and lead to denser grain structures with three-dimensional islands which is followed the Volmer-Weber growth mode. And smooth gate dielectric OTFTs with high-dielectric-constant nanocomposites after surface treatment had a good sub-threshold voltage (0.50 V/dec.), low threshold voltage (<-5 V), a high on/off current ratio (~108), and good mobility (0.62 cm2V-1s-1).
References
Chapter 1
[1. 1] (a) T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M.A Haase, D. E. Vogel , S. D. Theiss, Chem. Mater.16, 4413 (2004) b) S. R. Forrest, Nature 428, 911(2004) c) T. Tsutsui, K. Fujita, Adv. Mater., 14, 949 (2002) d) J. M. Shaw, P. F. Seidler, IBM J. Res. Dev.,45,3 (2001).
[1. 2] NOBEL e-Museum, www.nobel.se/index.html, (2003)
[1. 3] E. J. M. Kendall, Transistor, Pergamon Press: Oxford, Great Britain, 308 (1969).
[1. 4] http://www.digitaltechnews.com/news/2007/05/sonys_flexible.html
[1. 5] www.science.edu/TechoftheYear/EnterNominees.htm
[1. 6] www.aist.go.jp/2008/20080728/20080728.html
[1. 7] T. W. Kelley, L. D. Boardman, T. D. Dunbar, D. V. Muyres, M. J. Pellerite, and T. P. Smith, Journal of Physical Chemistry B 107, 5877-5881, (2003).
[1. 8] C. R. Kagan and P. Andry, Thin-Film Transistors, 1st ed. Boca Raton, FL, USA: CRC Press, (2003).
[1. 9] M. Halik, H. Klauk, U. Zschieschang, G Schmid, W. Radlik and W. Weber, Adv. Mater. 14 (2002) 1717.
[1. 10] F. Chen, C. W. Chu, J He and Y. Yang, App. Phys. Lett. 85, 3295(2004).
[1. 11] C. Jung, A. Ma;iakai, A. Sidorenko and T. Siegrist, App. Phys. Lett. 90 062111 (2007)
[1. 12] S. Y. Yang, S. H. Kim, K. Shin, H. Jeon and C.E. Park, App. Phys. Lett. 88 173507( 2006).
[1. 13] X.-H. Zhang, B. Demercq, X. Wang, S. Yoo, T. Kondo, Z. L. Wang, and B. Kippelen, Org. Electron. 8 , 718 (2007).
[1. 14] M. Kitamura and Y. Arakawa, Appl. Phys. Lett. 89 , 223525 (2006).
[1. 15] A. Facchetti, M.-H. Yoon, and T. J. Marks, Adv. Mater. 17, 1705, (2005).
[1. 16] Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, Appl. Phys. Lett. 87,
152105 (2005).
[1. 17] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik, J. Appl. Phys. 92, 5259 (2002).
[1. 18] Rocı´o Ponce Ortiz, Antonio Facchetti, and Tobin J. Marks, Chem. Rev., 110, 205–239 (2010)
Chapter 2
[2. 19] G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw, Appl. Phys. Lett.77, 1487-1489, (2000).
[2. 20] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science 290, 2123-2126, (2000).
[2. 21] D. R. Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang, Printed Organic and Molecular Electronics Kluwer Academic Publishers, (2004).
[2. 22] C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99, (2002).
[2. 23] G. Horowitz, "Organic field-effect transistors," Adv. Mater. 10, 365-377, (1998).
[2. 24] G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, and M. Hajlaoui, Adv. Mater.10, 923-927, (1998).
[2. 25] A. R. Brown, C. P. Jarrett, D. M. deLeeuw, and M. Matters, Synthetic Metals 88, 37-55, (1997).
[2. 26] G. Horowitz, Semiconducting Polymers 463-514, (2000).
[2. 27] E. Calvetti, L. Colalongo, and Z. M. Kovacs-Vajna, Solid-State Electronics 49, 567-577, (2005).
[2. 28] Y. Roichman, Y. Preezant, and N. Tessler, Phys. Stat. Sol., 201, 1246, (2004).
[2. 29] R.Farchioni and G. Grosso, Organic Electronic Materials - Conjugated Polymers and Low Molecular Weight Organic Solids, Springer: New York, U.S., (2001).
[2. 30] Y. Tanabe, Macro-molecular Science and Engineering, New Aspects, Springer: New York, U.S., 319 (1999).
[2. 31] A. V. Dzyabchenko, V. E. Zavodnik, and V. K. Belsky, Acta Cryst. B35, 2250 (1979)
[2. 32] E. H. Rhoderick, Metal-Semiconductor Contacts (Clarendon, Oxford, 1978).
[2. 33] V. L. Rideout, Thin Solid Films 48, 261 (1978).
[2. 34] (a) S. M. Sze, Physics of Semiconductor Devices, Second Edition (Wiley & Sons, New York, 1981). (b) J. J. Sparkes, Semiconductor Devices, Second edition (CHAPMAN & HALL, London, 1994).
[2. 35] M. Koehler and I. A. Hümmelgen, Appl. Phys. Lett. 70, 3254 (1997).
[2. 36] A. J. Champbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys. 82, 6326 (1997).
[2. 37] H. Bässler, Phys. Status Solidi B, 175, 15 (1993).
[2. 38] P. M. Borsenberger, L. Pautmeier, and H. Bässler, J. Chem. Phys. 94, 5447 (1991).
[2. 39] P. M. Borsenberger, E. H. Magin, M. van der Auweraer, and F. C. de Schryver, Phys. Stat. Sol. A ,140, 9 (1993).
[2. 40] R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).
[2. 41] P. F. Barbara, T. J. Meyer, and M. A. Ratner, J. Phys. Chem. 100, 13148 (1996).
[2. 42] J. L. Brédas and G. A. Street, Acc. Chem. Res. 18, 309 (1985).
[2. 43] Y. A. Berlin, G. R. Hutchinson, P. Rempala, M. A. Ratner, J. J. Michl, Phys. Chem. A 107, 3970 (2003).
[2. 44] Y. A. Berlin, G. R. Hutchinson, P. Rempala, M. A. Ratner, J. J. Michl, Phys. Chem. A 107, 3970 (2003).
[2. 45] V. Lemaur, D. A. da Silva Filho, V. Coropceanu, M. Lehmann, Y. Geerts, J. Piris, M. G. Debije, A. M. van de Craats, K. Senthilkumar, L. D. A. Siebbeles, J. M. Warman, J. L. Brédas, and J. Cornil, J. Am. Chem. Soc. 126, 3271 (2004).
[2. 46] X. Y. Li, X. S. Tang, F. C. He, Chem. Phys. 248, 137 (1999).
[2. 47] J. Cornil, D. Beljonne, J. P. Calbert, J. L. Brédas, Adv. Mater. 13, 1053 (2001).
[2. 48] G. Horowitz, X. Peng, D. Fichou and F. Garnier, Synth. Met. 51, 419 (1992).
[2. 49] S. F. Nelson, Y. Y. Lin, D. J. Gundlach, T.N. Jackson, IEEE Electron. Device Lett. 18, 606 (1997).
[2. 50] H. Klauk, M. Halik, U. Zschieschang, G. Schmid and W. Radlik, J. Appl. Phys. 92 , 5259 (2002).
[2. 51] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, H. Kim, Appl. Phys. Lett. 88, 162109 (2006).
[2. 52] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward and M. F. Toney, J. Amer. Chem. Soc. 126, 4084 (2004).
[2. 53] G. Yoshikawa, T. Miyadera, R. Onoki, K. Ueno, I. Nakai, S. Entani, S. Ikeda, D. Guo, M. Kiguchi, H. Kondoh, T. Ohta and K. Saiki, Surf. Sci. 600, 2518 (2006).
[2. 54] C. E. Thayer, J.T. Sadowski, F. M. zu Heringdorf, T. Sakurai and R. M. Tromp, Phys. Rev. Lett. 95, 256106 (2005).
[2. 55] J. E. Northrup, M. L. Tiago and S. G. Louie, Phys. Rev. B 66, 121404 (2002).
[2. 56] R. J. Hamers, Nature 412, 489 (2001).
[2. 57] F. J. M. Heringdorf, M. C. Reuter and R. M. Tromp, Appl. Phys. A 78, 787 (2004).
[2. 58] P. G. Schroeder, C.B. France, J.B. Parkinson, J. Appl. Phys. 91, 3010 (2002).
[2. 59] R. B. Campbell, J. M. Robertson and J. Trotter, Acta Crystallogr. 15, 289 (1962).
[2. 60] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward and M. F. Toney, J. Am. Chem. Soc. 126, 4084 (2004).
[2. 61] L. F. Drummy and D. C. Martin, Adv. Mater. 17 (2005) 903.
[2. 62] C. D. Dimitrakopoulos, A.R. Brown and A. Pomp, J. Appl. Phys. 80, 2501(1996).
[2. 63] C. C. Mattheus, A. B. Dros, J. Baas, G. T. Oostergetel, A. Meetsma, J. L. de Boer, T. T. M. Palstra, Synth. Met. 138, 475 (2003).
[2. 64] S. Schiefer, M. Huth, A. Dobrinevski and B. Nickel, J. Am. Chem. Soc. 129, 10316 (2007).
[2. 65] T. Kakudate, N. Yoshimoto and Y. Saito, Appl. Phys. Lett. 90, 081903 (2007).
[2. 66] I. P. M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth and T. M. Klapwijk, Synt. Met. 104, 175 (1999).
[2. 67] I. P. M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth and T. M. Klapwijk, Synt. Met. 104, 175 (1999).
[2. 68] S. R. Forrest, Chem. Rev. 97, 1793 ~1997
[2. 69] R. B. Campbell, J. Monteath, and J. Trotter, Acta Crystallogr. 14, 705 ~1961!.
[2. 70] R. W. G. Wyckoff, Crystal Structures, ~Interscience, New York, 1971!,Vol. 6.
[2. 71] A. C. Mayer, A. Kazimirov and G. G. Malliaras, Phy. Rev. Lett. 97, 105503 (2006).
[2. 72] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward and M. F. Toney, J. Amer. Chem. Soc. 126, 4084 (2004).
[2. 73] “Pentacene thin-film transistors on inorganic dielectrics Morphology”
[2. 74] J. Frenkel, Phys. Rev. 54, 647 (1938).
[5.75]. D. Monro, Phys. Rev. Lett. 54, 146 (1985).
[5.76]. R. Schmechel and H. von Seggern, Phys. Stat. Sol. A, 201, 1215 (2004).
[5.77]. G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000)
[5.78]. (a) F. Gutman and L. E. Lyons, Organic Semiconductors (Wiley, New York, 1967). (b) N. von Malm, R. Schmechel, and H. von Seggern, J. Appl. Phys. 89, 5559 (2001).
[5.79]. (a) S. D. Baranovskii, T. Faber, F. Hensel, and G. Leising, J. Phys.: Condens. Matter 9, 2699 (1997). (b) S. D. Baranovskii, H. Cordes, F. Hensel, and G. Leising, Phys. Rev. B 62, 7934 (2001). (c) V. I. Arkhipov, E. V. Emelianova, G. J. Adriaenssens, and H. Bassler, J. Non-Cryst. Solids 299, 1047 (2001). (d) V. I. Arkhipov, E. V. Emelianova, and G. J. Adriaenssens, Phys. Rev. B 64, 125125 (2001). (e) R. Schmechel, J. Appl. Phys. 93, 4653 (2003).
[5.80]. (a) A. J. Heeger, S. Kivelson, J. Schrieffer, and W.-P. Su, Rev. Mod. Phys. 60, 781 (1988). (b) P. D. Townsend and R. H. Friend, Phys. Rev. B 40, 3112 (1989).
[2. 81] Siegfried, S., J. Coll. Interface Sci., 65[1], 118 (1978).
[2. 82] (a) S. M. Sze, Physics of Semiconductor Devices, Second Edition (Wiley & Sons, New York, 1981). (b) J. J. Sparkes, Semiconductor Devices, Second edition (CHAPMAN & HALL, London, 1994).
[2. 83] W. Wang, T. Lee, and M. A. Reed, Phys. Rev. B 68, 035416 (2003).
[2. 84] (a) N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals, Second Edition (Oxford University Press, Oxford, 1948). (b) M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970). (c) V. I. Arkhipov, P. Heremans, E. V. Emelianova, and G. J. Adriaenssens, Appl. Phys. Lett. 79, 4154 (2001).
[2. 85] (a)D. T. Cromer and K. Herrington, J. Am. Chern. Soc. 77,4708 (1955). (b) V. W. H. Baur, Acta Crystallogr. 14,214 (1961).
[2. 86] Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Selfassembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews 105, 1103-1169 (2005).
[4.87] Weitz, D. A. , Science 303, 968-969, (2004)
[4.88] Tadros, Th. F. Symposium on Paper Coating Fundamentals, 1-13, TAPPI Press (1991).
[2. 89] Yang, Y.; Wang, W.; Li, J. R.; Mu, J.; Rong, H. L., Journal of Physical Chemistry B, 110, 16867-16873 2006.
[2. 90] Zallen, R., The Physics of Amorphous Solids, Wiley, New York, 135 (1983).
[2. 91] (a)Armstrong, N. R.; Carter, C.; Donley, C.; Simmonds, A.; Lee, P.; Brumbach, M.;Kippelen, B.; Domercq, B.; Yoo, S. Y., Thin Solid Films 445, 342-352 (2003).(b) Lee, J.; Jung, B. J.; Lee, J. I.; Chu, H. Y.; Do, L. M.; Shim, H. K., Journal of Materials Chemistry 12, 3494-3498 (2002).
[2. 92] N. Nickel, R. Barabash, R. Ruiz, N. Koch , A. Kahn, L.C. Feldman, R.F. Haglund and G. Scoles, Phys. Rev. B 70, 125401(2004).
[2. 93] K. Puntambekar, J. Dong, G. Haugstad and C. D. Frisbie, Adv. Mater. 16, 879 (2006).
[2. 94] A. C. Mayer, R. Ruiz, R. L. Headrick, A. Kazimirov and G. G. Malliaras, Organ. Electr. 5, 257 (2004).
[2. 95] J. H. Cho, D. H. Kim, Y. Jang, W. H. Lee, K. Ihm, J. H. Han, S. Chung, K. Cho, Appl. Phys. Lett. 89 132101 (2006).
[2. 96] D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99, (2002)
[2. 97] S. Pratontep, F. Nuesch, L. Zuppiroli and M. Brinkmann, Phys. Rev. B 72, 085211 (2005).
[2. 98] B. Stadlober, U. Haas, H. Maresch and A. Haas, Phys. Rev. B 74, 165302 (2006).
[2. 99] A. C. Mayer, R. Ruiz, H. Zhou, R. L. Headrick, A. Kazimirov and G. G. Malliaras, Phys. Rev. B 73, 205307 (2006).
[2. 100] M. Shtein, J. Maple, J. B. Benziger and S. R. Forrest, Appl. Phys. Lett. 81, 268, (2002).
[2. 101] S. E. Fritz, T. W. Kelley and C. D. Frisbie, J. Phys. Chem. B, 109, 10574 (2005).
[2. 102] R. A. L. Jones, R. W. Richards, Polymers at Surfaces and Interfaces, Cambridge University Press, Cambridge, UK 1999.
[2. 103] L. L. Chua, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Adv. Mater., 16, 1609 (2004).
[2. 104] Kim, J. S.; Friend, R. H.; Cacialli, F., Surface wetting properties of treated indium tin oxide anodes for polymer light-emitting diodes. Synthetic Metals 111, 369-372 (2000).
[2. 105] (a) You, Z. Z.; Dong, J. Y., Oxygen plasma treatment effects of indium-tin oxide in organic light-emitting devices. Vacuum 2007, 81, (7), 819-825.(b) Ma, K. X.; Ho, C. H.; Zhu, F. R.; Chung, T. S., Investigation of surface energy for organic light emitting polymers and indium tin oxide. Thin Solid Films, 371, 140-147 (2000).
[2. 106] Kim, J. S.; Friend, R. H.; Cacialli, F., Journal of Applied Physics, 86, 2774-2778 (1999).
[2. 107] Strom, G.; Fredriksson, M.; Stenius, P., Journal of Colloid and Interface Science, 119,352-361 (1987).
[2. 108]
(a)http://www.memc.com/MEMC.nsf/0/6D86FAED316FE14686256AE80058166D/$File/Ultraflat_- wafers.pdf?OpenElement, @ MEMC, (2003). (b)http://www.komsil.co.jp/en/office/hist.htm, @ Komatsu, (2003).
[2. 109] http://www.research.ibm.com, @ IBM, (2004).
[2. 110] http://www.sematech.org/corporate/index.htm, @ Sematch Inc., (2004).
[2. 111] C. Kourouklis, T. Kohlmeier, H.H. Gatzen, Sensors and Actuators A ,106, 263–266 (2003)
[2. 112] CHEN W.-C., LIN S.-C., DAI B.-T., TSAI M.-S., J. Electrochem. Soc., 146, 3004 (1999).
[2. 113] KOUROUKLIS C., KOHLMEIER T., GATZEN H.H., Sensors Actuat., A, 106, 263 (2003).
[2. 114] http://www.nikon.co.jp/main/eng/products/cmp_e.htm, Nikon Corporation,(2003).
[2. 115] International Technoligy Roadmap for Semiconductor, (2007).
[2. 116] STEIGERWALD J.M., MURARKA S.P., GUTMANN R.J., Chem.-Mechanical Planarization of Microelectronic Materials, Wiley, New York, 1997.
[2. 117] OLIVER M.R., Chem.-Mechanical Planarization of Semiconductor Materials, Springer, New York, 2004.
[2. 118] (a)J.F. Archard, J. Appl. Phys. 24, 981 (1953).(b). N. J. Brown, Document MISC4476, Revision 1, (Livermore, (c)CA: Lawrence Livermore National Laboratory, 1990).(d). W.L. Silvernail and B.L. Silvernail, Optical World 9, 7 (1980). (e). F.W. Preston, J. Soc. Glass Tech. 11, 214 (1927).
[2. 119] (a) H.H. Karow, Fabrication Methods for Precision Optics (New York: John Wiley & Sons, Inc., 1993), p. 183.
[2. 120] D.F. Horne, Optical Production Technology, (Bristol, Great Britain: Adam Hilger Ltd, 1972), p. 235.
[4.121] Tai, Y. L.; Tsai, M. S.; Tung, I. C.; Dai, B. T.; Feng, M. S., Electrochemical Society Proceedings, 99, 15-23, (1999).
[4.122] Borst, C. L.; Thakurta, D. G.; Gill, W. N.; Gutmann, R. J., Journal of the Electrochemical Society, 146, 4309-4315, (1999)
[4. 123] Chen, W. C.; Yen, C. T., Journal of Vacuum Science and Technology B, 18, 201- 207, (2000)
[4.124] Wang, Y. L.; Liu, C.; Chang, S. T.; Tsai, M. S.; Feng, M. S.; Tseng, W. T., Thin Solid Films, 308-309, p550-554, (1997).
[4.125] Neirynck, J. M.; Yang, G. R.; Muraka, S. P.; Gutmann, R. J., Thin Solid Films, 290-291, 447-452, (1996).
[4.126] Lu, H.; Cui, H.; Bhat, I.; Muraka, S.; Lanford, W.; Hsia, W. J.; Li, W., Journal of Vacuum Science and Technology B, 20, 828-833, (2002).
[4.127] Harmannsgruber, E.; Zwicker, G.; Beekmann, K., Microelectronic Engineering, 50, 53-58, (2000).
[4.128] Chang, T. C.; Tsai, T. M.; Liu, P. T.; Yan, S. T.; Chang, Y. C.; Aoki, H.; Sze, S. M.; Tseng, T. Y., Journal of Vacuum Science and Technology B, 22, 1196-1201, (2004).
[4.129] Chang, T. C.; Tsai, T. M.; Liu, P. T.; Chen, C. W.; Yan, S. T.; Aoki, H.; Chang, Y. C; Tseng, T. Y., Electrochemical and Solid- State Letters, 7, G122-G124, (2004).
[4.130] Liu, P. T.; Chang, T. C.; Tsai, T. M.; Yan, S. T.; Chang, Y. C.; Aoki, H.; Tseng, T. Y., Electrochemical Society Proceedings, 13, 237- 243, (2003).
[3.131] Jianwen Xu, C. P. Wong, Journal of Electronic Materials, 35, 1087, (2006).
Chapter 4
[4.132] (a) Rao, F.; Wang, X.; Zhang, W.; Zhong, Y., ICMC, 263-270 (2004); (b) Lee, Jeong-Joon; Hur, Sung-Jin; Nam, Ki-Hyuk; Choi, Wan; Kim, Myung-Joon, ICACT 2005, 1, 401-403, (2005) (c)Schroeder, Raoul; Majewski, Leszek A.; Grell, Martin, Advanced Materials, 17, 12, 1535-1539, (2005) (d) Slenes, Kirk M.; Bragg, Lewis E. IEEE Transactions on Magnetics, 41, 326-329 (2005)
[4.133] Ihlefeld, Jon; Laughlin, Brian; Hunt-Lowery, Alisa; Borland, William; Kingon, Angus; Maria, Jon-Paul, Journal of Electroceramics, 14, 95-102 (2005)
[4.134] M. Rabuffi, G. Picci, IEEE Trans. Plasma Sci. 30, 1939 (2002)
[4.135] (a) C. Pecharroman, F. Esteban-Betegon, J. F. Bartolome, S. Lopez-Esteban, and J. S. Moya, Adv. Mater. 13, 1541 (2001) (b) Dang, Zhi-Ming; Lin, Yuan-Hua; Nan, Ce-Wen Advanced Materials, 15, 1625-1629 (2003) (d) Qi, Lai; Lee, Burtrand I.; Chen, Sihai; Samuels, William D.; Exarhos, Gregory J., Advanced Materials, 17, 1777-1781, (2005)
[4.136] (a) Ramesh, Sivarajan, Shutzberg, Brad A.; Huang, Chester Chet; Gao, Jie; Giannelis, Emmanuel P. IEEE Transactions on Advanced Packaging, 26, 17-24, (2003) (b) Rao, F.; Wang, X.; Zhang, W.; Zhong, Y., ICMC, 263-270 (2004)
[4.137] Gilbert, Lynell J.; Schuman, Thomas P.; Dogan, Fatih, Ceramic Transactions, 179, 17-26, (2006)
[4.138] Randon, J.; Blanc, P.; Paterson, R. J. Membr. Sci. 98, 119 (1995).
[4.139] Pawsey, S.; Yach, K.; Reven, L. Langmuir, 18, 5205 (2002).
[4.140] Lundqvist, M. J.; Nilsing, M.; Lunell, S.; Aakermark, B.; Persson, P. J. Phys. Chem. B, 110, 20513 (2006).
[4.141] Guerrero, G.; Mutin, P. H.; Vioux, A. Chem. Mater., 13, 4367 ( 2001).
[4. 142] Roper III, J. A. “An Introduction to the Rheology of Paper Coatings” TAPPI Coating Binders Short Course Ch. 3 Section 2, TAPPI Press (1996).
[4.143] Shapiro, A. P. Probstein, R. F. Physical Review Letters, 68 1422-1425, (1992)
[4.144] E. E. Walker., Journal of Applied Chemistry, 2, 470 – 481 (2007)
[4.145] H. Tang, J. H. Piao, X. F. Chen, Y. X. Luo, and S. H. Li, Journal of Applied Polymer Science, 48, 1795-1800, (1993).
[4.146] C. Kourouklis, T. Kohlmeier, H.H. Gatzen, Sensors and Actuators A ,106, 263–266 (2003)
[2. 147] D.F. Horne, Optical Production Technology, (Bristol, Great Britain: Adam Hilger Ltd, 1972), p. 235.
[4.148] Applications note MAL123, Introducing low-k dielectrics into semiconductor processing, www.mykrolis.com.
[4.149] D. Shamiryan, T. Abell, F. Lacopi, K. Maex, Mater. Today, 7 34 (2004).
[4.150] D.G. Thakurta, C.L. Borst, D.W. Schwendeman, R.J. Gutmann, W.N. Gill, Thin Solid Films 366 181 (2000).
[4.151] H. Satou and D. Makino: Polyimides for Electronic Applications; D. J. Monk and D. S. Soane: Interconnect Dielectrics in Polymers for Electronic and Photonic Applications, ed. C. P. Wong (Academic Press, New York, 1993) p. 221.
[4.152] (a) K. Kobayashi, Mater. Sci. Eng. 98, 181 (2003). (b)Y.-J. Seo, G.-U. Kim, W.S. Lee, Microelectron. Eng. 71 (2004)
[4.153] Kwonwoo Shin, Chanwoo Yang, Sang Yoon Yang, Hayoung Jeon, Appl. Phys. Lett., 88, 072109 (2006)
[4.154] Sandra E. Fritz, Tommie Wilson Kelley, C. Daniel Frisbie, J. Phys. Chem. B, 109, 10574-10577, (2005)
Chapter 5
[5.155]. F.C. Chen, Chih-Wei Chu, Jun He, and Yang Yang, Appl. Phys. Lett. 85, 3295 (2004)
[5.156]. C. Jung, A. Maliakai, A. Sidorenko, and T. Siegrist, Appl. Phys. Lett. 90, 62111 (2007)
[5.157]. Z. Bao, Y. Feng, A. Dosabalapur, V. R. Raju, A. Lovinger, Chem. Mater., 9, 1299, (1997)
[5.158]. S. Y. Park, M. Park, and H.H. Lee, Appl. Phys. Lett. 85, 2283 (2004)
[5.159]. Lin, Y.-Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N. IEEE Trans. Electron DeVices, 44, 1325 (1997).
[5.160]. (a) Yang, H.; Shin, T. J.; Ling, M.-M.; Cho, K.; Ryu, C. Y.; Bao, Z. J. Am. Chem. Soc., 127, 11542 (2005). (b) Puntambekar, K.; Dong, J.; Haugstad, G.; Frisbie, C. D. AdV. Funct. Mater., 16, 879 (2006).
[5.161]. (a) Stadholder, B.; Hass, U.; Maresch, H.; Haase, A. Phys. ReV. B, 74, 165302 (2006). (b) Chua, L.-L.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. AdV. Mater., 16, 1609 (2004).
[5.162]. (a) Podzorov, V.; Menard, E.; Borissov, A.; Kiryukhin, V.; Rogers, J. A.; Gershenson, M. E. Phys. ReV. Lett., 93, 086602 (2004). (b) Dinelli, F.; Murgia, M.; Levy, P.; Cavalleni, M.; Biscarini, F.; de Leeuw, D. M. Phys. ReV. Lett., 92, 116802 (2004). (c) Kang, J. H.; da Silva Filho, D. A.; Bredas, J. L.; Zhu, Z.-Y. Appl. Phys. Lett., 86, 152115 (2005).
[5.163]. Houili, H.; Picon, J. D.; Zuppiroli, L.; Bussac, M. N. J. Appl. Phys., 11, 123702 (2006).
[5.164]. (a) Sirringhaus, H.; Wilson, R. J.; Friend, R. H.; Inbasekaran, M.; Wu, W.; Woo, E. P.; Grell, M.; Bradley, D. D. C. Appl. Phys. Lett., 77, 406 (2000). (b) Matters, M.; de Leeuw, D. M.; Herwig, P. T.; Brown, A. R. Synth. Met., 102, 998 (1999). (c) Street, R. A.; Salleo, A.; Chabinyc, M. L. Phys. ReV. B, 68, 085316 (2003).
[5.165]. Sirringhaus, H. AdV. Mater., 17, 2411 (2005).
[5.166]. (a) Kamins, T. I., J. Appl. Phys., 42, 4375 (1971). (b) Seto, J. Y. W. J. Appl. Phys., 46, 5247 (1975). (c) Baccarani, G.; Ricco, B.; Spadini, G. J. Appl. Phys., 49, 5565 (1978). (d) Levinson, J.; Shepherd, F. R.; Scanlon, P. J.; Westwood, W. D.; Este, G.; Rider, M. J. Appl. Phys., 53, 1193 (1981).
[5.167]. Scho¨n, J. H.; Kloc, Ch.; Batlogg, B. Org. Electron., 1, 57 (2000).
[5.168]. Veres, J.; Ogier, S.; Lloyd, G. Chem. Mater., 16, 4543 (2004).
[5.169]. (a) Knipp, D.; Street, R. A.; Volkel, A.; Ho, A. J. Appl. Phys., 93, 347 (2003). (b) Park, Y. D.; Lim, J. A.; Lee, H. S.; Cho, K. Mater. Today, 10, 46 (2007). (c) Yagi, I.; Tsukagoshi, K.; Aoyagi, Y. Appl. Phys. Lett., 86, 103502 (2005). (d) Kim, C.; Facchetti, A.; Marks, T. J. Science, 318, 76 (2007). (e) Yokoyama, T.; Park, C. B.; Nagashio, K.; Kita, K.; Toriumi, A. Appl. Phys. Exp., 1,
041801 (2008).
[5.170]. Mottaghi, M.; Horowitz, G. Org. Electron., 7, 528 (2006).
[5.171]. F. Chen, C. W. Chu, J. He, and Y. Yang, Appl. Phys. Lett. 85 , 3295(2004).
[5.172]. C. Jung, A. Maiiakai, A. Sidorenko, and T. Siegrist, Appl. Phys. Lett. 90, 062111 (2007)
[5.173]. S. Y. Yang, S. H. Kim, K. Shin, H. Jeon, and C. E. Park, Appl. Phys. Lett. 88, 173507 (2006).
[5.174]. K. N. N. Unni, S. D. Seignon, and J. M. Nunzi, J. Phys. D: Appl. Phys.38 , 1148 (2005).
[5.175]. M. Yoon, H. Yan, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 127, 10388 (2005).
[5.176]. F. C. Chen, C. S. Chuang, and Y. S. Lin, Org. Electron. 7 , 435 (2006).
[5.177]. J. Park, S. I. Kang, S. P. Jang, and J. S. Choi, SID Int. Symp. Digest Tech., 4, 71 (2005)
[5.178]. R. A. Street, J. E. Northrup, and A. Salleo, Phys. Rev. B 71, 165202 (2005)
[5.179]. H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, and X. W. Liang, Adv. Mater. 17, 3639 (2007).
[5.180]. M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, Appl. Phys. Lett. 81, 268 (2002).
[5.181]. C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, Appl. Phys. Lett. 80 (1996)
[5.182]. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, Adv. Mater. 14, 1717 (2002).
[5.183]. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, Adv. Mater. 14, 1717 (2002).
[5.184]. J. H. Schon, Z. Bao, J. Appl. Phys. 89, 3526 (2001)
[5.185]. M. Kiguchi, M. Nakayama, K. Fujiwara, K. Ueno, T. Shimada and K. Saiki, Jpn. J. Appl. Phys. 42, 1408 (2003).
[5.186]. R. Ruiz, A. Papadimitratos, A. C. Mayer and G. Malliaras, Adv. Mater. 17, 1795 (2005).
[5.187]. M. Daraktchiev, A. V. Muhlenen, F. Nuesch, M. Schaer, M. Brinkmann, M. N. Bussac and L. Zuppiroli, New J. of Phys. 7. 133 (2005).
[5.188]. R. Ruiz, B. Nickel, N. Koch, L. C.Feldman, R. F. Haglund, A. Kahn, Phys. Rev. B, 67, 125406 (2003).
[5.189]. S. Zorba, Y. Shapir and Y. Gao, Phys. Rev. B 74, 245410, (2006).
[5.190]. J. Park, S. I.Kang, S. P. Jang and J. S. Choi , SID 05 Digest, 237, (2005).
[5.191]. R. Schroeder, L. A. Majewski, and M. Grell, Appl. Phys. Lett., 83, No. 15, 13 (2003))
[5.192]. K. Shin, C. Yang, S. Y. Yang, H. Jeon, and C. E. Park, Appl. Phys. Lett., 88, 072109, (2006)
[5.193]. S. Steudel, S. De Vusser, S. De Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, Appl. Phys. Lett., 85, 19, (2004)
[5.194]. S.Y. Yang, K. Shin, and C.E. Park, Adv. Funct. Mater. 15, 1806 ( 2005)
[5.195]. D. Knipp, R.A. Street, A. Volkel, and J. Ho, J. Appl. Phys. 93, 347 (2003)
[5.196]. R. A. Street, D. Knipp, and A. R. Völkel, Appl. Phys. Lett., 80, 1658, (2002)
[5.197]. H. Sirringhaus, Adv. Mater. 17, 2411(2005)
[5.198]. C. Jung, A. Maliakal, Appl. Phys. Lett., 90, 062111 (2007)
[5.199]. F. Cicoira, C. Santato, F. Dinelli, M. Murgia, M. A. Loi, T. Biscarini, R.Zamboni, P. Heremans, and M. Muccini, Adv. Funct. Mater. 15, 375 (2005.)
[5.200]. Raoul Schroeder, Leszek A. Majewski, Monika Voigt, and Martin Grell, , IEEE Electr device L, 26, 69-71(2005)
[5.201]. Lee, Cheon An; Park, Dong Wook; Jin, Sung Hun; Park II, Han; Lee, Jong Duk; Park, Byung-Gook, Appl. Phys. Lett., 88, 252102 (2006)
校內:2020-12-31公開