| 研究生: |
施淳仁 Shih, Chun-Jen |
|---|---|
| 論文名稱: |
台灣西部離岸風場液化潛能評估 Evaluation of Liquefaction Potential in Western Taiwan Offshore Wind Farm |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 共同指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 土壤液化 、離岸風力發電 |
| 外文關鍵詞: | soil liquefaction, offshore wind farm |
| 相關次數: | 點閱:97 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣於沿海、近海與離島都具優越之風力能源,而我國屬於海島型國家且自產能源缺乏,石化能源均需仰賴進口,開發此風力發電將能發揮其效益,因應政府再生能源政策,遂選定風力品質優良且規劃面積廣闊之彰化近海地區,規劃彰濱區與芳苑區兩個離岸風場。又臺灣處環太平洋地震帶西岸,地震可能引致海床土壤液化,而大型風力機組造價昂貴,風機損毀將導致發電廠停止運作,故評估風場之液化潛能有其必要性。
本研究採用簡易經驗分析法之Seed (1997)法、Tokimatsu & Yoshimi(1983)法以及NJRA(1996)作為離岸風場液化潛能評估方法,並配合不同加速度計算來源作為分析參數,其中包括國震中心建議地震分區圖之建議值,簡文郁(2001)之震源衰減公式計算值,以及SHAKE地盤反應分析程式分析所得之值,進行液化潛能評估,再依Iwasaki(1982)所提出之深度加權法計算液化潛能指數,建立彰濱先導型離岸風場之液化潛能分區圖,期作為我國未來離岸風力發電場設計參考之用。
As an island country, Taiwan lacks of fossil energy and has to import the energy from abroad. However, there are several places with superior wind energy in Taiwan where located in the coastal, in the offshore and island. Therefore, the development of the wind power to compensate the shortage of fossil energy is inevitable. According to the government plan on renewable energy, Changhua offshore area has been selected as the wind farm for the development of the wind power. There are two sites, Jhangbin site and Fengyuan site, including in the the proposed offshore wind farms.
However, Taiwan is located in the seismic belt of western Pacific rim; Several severe earthquake disasters have recorded in the proposed area of the wind farm. Earthquake may cause seabed soil liquefaction. The sea bed liquefaction may damage the structures of the wind turbines and the damage of the structures would cause power plants stop working. Therefore, it is necessary to evaluate the liquefaction potential in seabed soil of the proposed sites.
This study uses the simple empirical methods to evaluate the liquefaction potential of the sea bed soil in the offshore wind farm, which including Seed’s simplified method (1997), Tokimatsu and Yoshimi’s method (1983) and the method suggested by NJRA (1996). The ground peak acceleration for which the three empirical methods is needed is computed by three methods, which are NCREE suggested acceleration, attenuation formula and computer program SHAKE. Then, the liquefaction potential index are computed by using Iwasaki’s depth-influence method and set the divisional graphs of liquefaction potential in offshore wind farm. This outcome can be used for design in the offshore wind farm.
1. Bjerrum, L., (1973), “Geotechnical Problems Involved in Foundation of Structures in North Sea,”Geotechnique, Vol. 23, pp. 319-358.
2. Finn, W. D. L., Lee, K. W. and Martin, G. R. (1977), “An Effective Stress Model for Liquefaction,” Journal of the Geotechnical Division, ASCE, Vol. 103, No. GT6, June, pp. 517-533.
3. Ghaboussi, J. and Dikmen, S. U. (1979), “LASS-III, Computer Program for Seismic Response and Liquefaction of Layered Ground under Multi-Directional Shaking,” Report No. UILU-ENG-79-2012, Department of Civil Engineering, University of Illinois at Urbana-Champaign, Urbana, 111.
4. Halebsky, M., Hale Enterprises and Wetmore, S.B., Global Marine Development Inc. (1986), “Seabed Strengthening by Deep Cement Mixing,” Offshore Technology Conference.
5. Hazen, A.(1920), “Hydraulic Fill Dams,” Transactions of the American Society of Civil Engineers, Vol. LXXXIII, No. 1, January 1919-1920, pp. 1713-1745.
6. Hardin, B.M. and Drnevich, V.P. (1972), “Shear Modulus and Damping in Soils: Design Equations and Curves,” Journal of the Soil Mechanics and Foundations Division, Vol. 98, No. 7, July 1972, pp. 667-692.
7. Ishibashi, I. M., Sherlif, M. A. and Cheng, W. L. (1982), “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,”Soils and Foundations, ASCE, 22(1), pp.37-48.
8. Ishibashi, I. and Zhang, X. (1993), “Unified Dynamic Shear Module and Damping Ratios of Sand and Clay,”Soils and Foundations, Vol. 33, No.1, pp.182-191.
9. Ishihara, K. (1993), “Liquefaction and Flow Failure during Earthquakes,” Gèotechnique, Vol. 43, Issue 3, pp. 351-415.
10. Ishihara, K. (1996), “Soil Behavior in Earthquake Geotechnics,” Clarendon Press New York, pp. 287-300.
11. Ishihara, K., Araki, K and Bradley, B. (2011),“Characteristics of Liquefaction Induced Damage in the 2011 Great East Japan Earthquake,” Int. Conf. on Geotechnics for Sustainable Development - Geotec, Hanoi, Vietnam. 22pp.
12. Iwasaki, T., Arakawa, T. and Tokida, K. (1982), “Simplified Procedures for Assessing Soil Liquefaction During Earthquakes,” International Journal of Soil Dynamics and Earthquake Engineering, vol. 3, no. 1, pp. 49-58.
13. Kramer, S. L. (1996), “Geotechnical Earthquake Engineering,” Prentice Hall, Englewood Cliffs, N. J., 653, pp. 348-422.
14. Kishida, H. (1966), “Damage to reinforced concrete buildings in Niigata City,” Soil & Foundation, 6, pp.75-87.
15. Lee, K. L. and Fitton, J. A. (1969), “Faction Affecting the Cyclic Loading Strength of Soil,”Vibration Effects of Earthquake on Soils the Foundations, ASTM, STP 450, pp. 71-96.
16. Liang, R. W., Bai, X. H. and Wang, J. C. (2000), “Effect of Clay Particle Content on Liquefaction of Soil,” Proceedings, 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
17. Liao, S. C. and Whitman, R. V. (1986), “Overburden Correction Factors for SPT in Sand,”Journal of Geotechnical Engineering, ASCE, Vol.112, No. GT3, pp. 373- 377.
18. Martin, P. P. (1978), “A Computer Program for the Nonlinear Analysis of Vertically Propagating Shear Waves in Horizontally Layered Deposits,” EERC Report 78/23, College of Engrg., Univ. of California, Berkeley, Calif.
19. Martin, P. P., and Seed, H. B. (1978), “APOLLO, A Computer Program for the Analysis of Pore Pressure Generation and Dissipation in Horizontal Sand Layers During Cyclic or Earthquake Loading,” EERC Report 78/21, College of Engrg., Univ. of California, Berkeley, Calif.
20. Mulilis, J. P., Chen, C. K. and Seed, H. B. (1975), “The Effects of Method of Sample Preparation on the Cyclic Stress Strain Behavior of Sands,”EERC Report 75/18.
21. Okuyama, F. (1983), “The Construction of Large Berth at Daikoku Wharf at The Port of Yokohama by Deep Mixing Method,”Civil Engineering in Japan, pp. 96-109.
22. Poulos, H. G. (1988), “Marine Geotechnics,” Allen & Unwin, pp.392-405.
23. Schnabel, Per B., Lysmer, J., and Seed, H. B. (1972), “SHAKE, A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites,” EERC Report 72-12, College of Engrg., Univ. of California, Berkeley, Calif.
24. Seed, H. B. and Idriss, I. M. (1970), “Soil Modulis and Damping Factors for Dynamic Response Analysis,” UCB/EERC-70/10, Earthquake Engineering Research Center, University of California, Berkeley, 1970-12, 40 pages.
25. Seed, H. B. and Idriss, I. M. (1971), “Simplified Procedure for Evaluationg Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, Vol. 97, No. 9, pp. 1249-1273.
26. Seed, H. B., Robert, T. W., Idriss, I. M. and Tokimatsu, K. (1986), “Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils,” Journal of Geotechnical Engineering., 112(11), 1016–1032.
27. Sherif, M. A., Ishibashi, I. and Tsuchiga, C. (1977), “Saturated Effects on Initial Soil Liquefaction,”Journal of the Geotechnical Engineering Division, Vol.103, No.8, pp.914-917.
28. Sumer, B., Ansal, A., Cetin, K., Damgaard, J., Gunbak, A., Hansen, N., Sawicki, A., Synolakis, C., Yalciner, A., Yuksel, Y., and Zen, K. (2007). ”Earthquake-Induced Liquefaction around Marine Structures.” J. Waterway, Port, Coastal, Ocean Eng., 133(1), 55–82.
29. Terashi M, and Juran I. (2000), “Ground improvement: State of the Art,” GeoEng 2000, Melbourne, Australia.
30. Tokimatsu, K. and Yoshimi, Y. (1983), “Empirical Correlation of Soil Liquefaction based on SPT N-value and Fines Content,”Soils and Foundations, Vol.23, No. 4.
31. Wong, R. T., Seed, H. B. and Chan, C. K. (1975), “Cyclic Loading Liquefaction of Gravelly Soils,”Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.101, No.GT6, pp. 571-583.
32. Youd, T. L. and Idriss, I. M. (1997), “Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance on Soils,”State University of New York at Buffalo.
33. Youd, T. L. et al. (2001),“Liquefaction Resistance of Soil: Summary Report from 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of soil”, ASCE,127(4), pp.297-313.
34. 日本道協會(1996),「道路橋示方書‧同解說:耐震設計編」。
35. 內政部營建署(2005),「建築物耐震設計規範及解說」。
36. 交通部運輸研究所(2006),「港灣地區地震及液化之常態監測研究」。
37. 交通部運輸研究所(2009),「港灣地區地震潛勢及港灣構造物耐震能力評估之研究」。
38. 台灣海洋科技研究中心(2012),「彰濱海域地質調查研究-地質調查鑽探試驗分析工作」。
39. 台灣電力公司委託中興工程顧問公司(2009),「彰濱離岸風力發電計畫可行性研究」。
40. 吳偉特、楊騰芳(1987),「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁。
41. 施政杰(2003),「能量式液化評估模式之研究」,碩士論文,國立成功大學土木工程研究所。
42. 夏啟明(1992),「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所。
43. 陳其薇(2005),「海床沉泥質黏土改良後工程行為及沉陷評估之研究」,國立台灣海洋大學河海工程學系,碩士論文。
44. 陳俊吉(2005),「近斷層強震反應之研究」,碩士論文,國立成功大學土木工程研究所。
45. 陳景文(1999),「台南主要經建區域之土壤液化潛能評估」,國家地震工程研究中心,NCREE-99-043。
46. 陳銘鴻、陳景文、李維峰、王志榮、辜炳寰(2002),「簡易液化評估方法之修正與微分區應用」,土壤液化問題之回顧與展望。
47. 張吉佐、曾文德、許建裕(2002),「台灣濱海工業區的地盤改良工法」,地工技術,NO.93,PP.53-68。
48. 張浼珣(2004),「初步液化潛能分區法之研究」,碩士論文,國立成功大學土木工程研究所。
49. 萬明憲(2001),「台南地區地層液化潛能評估」,碩士論文,國立成功大學土木工程研究所。
50. 黃鈺雯(2004),「高雄市土壤液化潛能分析與GIS資料庫之建置」,碩士論文,國立成功大學土木工程研究所。
51. 楊騰芳(1985),「細料在過壓密及前期微震作用下對飽和砂性土壤液化潛能之影響」,碩士論文,國立台灣大學。
52. 簡文郁(2001),「考慮特徵地震與地盤特性之震度分析與其在震害評估應用」,國家地震工程研究中心報告。