| 研究生: |
劉雅慈 Liu, Ya-Cih |
|---|---|
| 論文名稱: |
石門水庫乾旱預警指標之研究 A Study on Drought Early Warning Indices in the Shihmen Reservoir |
| 指導教授: |
游保杉
Yu, Pao-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 水庫系統 、乾旱預警模式 、乾旱指標 |
| 外文關鍵詞: | Reservoir system, Early warning model, Standardized drought indices |
| 相關次數: | 點閱:137 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於氣候變遷影響下,全球暖化加劇且極端之水文事件增加,乾旱逐漸成為研究學者、政府單位或是一般大眾所密切關注之議題。近年來氣候異常,導致臺灣未來降雨量將呈現豐水期愈豐、枯水期愈枯之趨勢,增加乾旱發生頻率、嚴重程度提升以及乾旱期距延長,容易造成水資源利用與調配更加艱難。
本研究採用降雨量與水庫蓄水量作為乾旱影響因子,發展石門水庫適用之乾旱預警指標,參考世界氣象組織於乾旱等級劃分之作法,分析乾旱預警指標與歷史事件之關係。進一步應用區別分析作為分類方法,以現況乾旱預警指標、未來乾旱預警指標以及未來水情燈號之關係建立乾旱預警模式,最後採用2014至2015年乾旱事件作為案例模擬。期望在乾旱來臨前,藉由乾旱預警模式提供決策者相關資訊,儘早啟動超前布署,透過加強灌溉節水管理與啟動備援水源設施等作為,能夠延長水庫供水日數,有助於紓緩乾旱對社會經濟之衝擊,全面提升抗旱韌性。
將乾旱預警指標與歷史事件進行分析,發現標準化降雨量指標(Standardized Precipitation Index)與標準化水庫蓄水量指標(Standardized Reservoir Storage Index)皆能明確地反映歷史乾旱事件,確立乾旱預警指標於歷史乾旱事件具有一定之掌握度後,應用於乾旱預警模式之建置。於乾旱預警模式中,最佳之現況乾旱預警指標組合為SPI1與SRSI1,並導入未來氣象條件(未來乾旱預警指標)進行未來燈號判別,結果顯示:加入未來乾旱預警指標有助於提高未來水情燈號之準確率,且不論是在率定年或驗證年之乾旱預警模式,對於未來燈號判別皆為枯水期間表現較豐水期間佳。
This study aims to develop a drought early warning model based on the standardized drought indices (SDI) for the water resources system of Shihmen Reservoir in northern Taiwan. Different hydrological variables (e.g., rainfall, reservoir inflow and storage) were used as the basis of SDI to characterize and monitor drought condition for water resources system. The SDI calculated by the historical rainfalls, reservoir inflows and storages were analyzed. It is found that the value of SDI can clearly reflect the situations of historical drought events. Further, the discriminant analysis was adopted to establish the drought early warning model based on the relationship among current SDI, future SDI and future regime lights. In the drought early warning model, the best combination of drought warning indices include current SDI (i.e., SPI1, SRSI1) and future SDI (i.e., SPI1 and SPI3) for predicting the future regime lights. The results show that adding future SDI can improve the prediction accuracy of future regime lights. For both the calibration period (1958-1997) and the verification period (1998-2017), the drought early warning model reveals satisfactory performance for predicting future regime lights. The prediction performances during the dry season are better than those during the wet season.
1. 朱吟晨、林士堯、朱容練、劉俊志、陳永明,2015,「2015年乾旱事件分析」,國家災害防救科技中心。
2. 朱容練、朱吟晨、林士堯、劉俊志、陳永明,2015,「2014-2015年乾旱事件概述」,國家災害防救科技中心。
3. 呂季蓉,2006,「台灣南部地區長期乾旱趨勢分析之研究」,國立成功大學水利及海洋工程學系碩士論文。
4. 宋嘉文,2003,「氣候變遷對台灣西半部地區降雨及乾旱影響之研究」,國立成功大學水利及海洋工程學系碩士論文。
5. 袁倫欽,2005,「水庫供水操作與乾旱預警系統之研究」,國立臺灣海洋大學河海工程學系博士論文。
6. 虞國興,2007,「水文情勢變化與區域乾旱程度影響之關聯性探討。行政院農業委員會補助研究計畫」,96 農科-12.1.1-利-b1(5)。淡江大學水資源管理與政策研究中心。
7. 簡均任,2013,「乾旱指標結合氣候統計降尺度預報於石門水庫供水之乾旱預警應用」,國立中央大學水文與海洋科學研究所碩士論文。
8. 羅萬倫,2015,「短期氣候預報在石門水庫梅雨期之水資源管理應用」,國立中央大學水文與海洋科學研究所碩士論文。
9. 黃柏誠、陳永明、朱容練、陳韻如、陳世偉、陳品妤,2010,「2009年台灣乾旱事件研究」,國家災害防救科技中心。
10. 經濟部水利署,1999,「乾旱指標之建立-中部及南部區域」。
11. 經濟部水利署,2011,「氣候變遷北部地區乾旱預警與應變措施規劃分析」。
12. 經濟部水利署,2015,「石門水庫調蓄潛能檢討及跨水系經營策略規劃」。
13. 經濟部水利署,2016,「北北桃水源運用整體供水調度規劃」。
14. 經濟部水利署,2017,「因應氣候變遷水源設施乾旱供水風險評估」。
15. 經濟部水利署北區水資源局,2017,「研商石門水庫、寶山及寶二水庫枯旱警戒值修訂事宜」。
16. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, In B. N. Petrov and F. Csaki (Eds.), Second International Symposium on Information Theory, Akademiai Kiado, pp.267–281.
17. American Meteorological Society (AMS). (2004). Statement on meteorological drought. Bull. Am. Meteor. Soc, 85, 771-773.
18. Byun, H. R., Wilhite, D. A. (1996). Daily quantification of drought severity and duration. Journal of Climate, 5, 1181-1201.
19. Chang, T. J. (1991). Investigation of precipitation droughts by use of kriging method. Journal of Irrigation and Drainage Engineering, 117(6), 935-943.
20. Edwards, D. C. (1997). Characteristics of 20th century drought in the United States at multiple time scales. Atmospheric Science Paper No. 634, May 1–30.
21. Estrela, M., Peñarrocha, D., Millán, M. (2000). Multi‐annual drought episodes in the Mediterranean (Valencia region) from 1950–1996. A spatio‐temporal analysis. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(13), 1599-1618.
22. Food and Agriculture Organization. (1983). Guidelines: Land evaluation for Rainfed Agriculture. FAO Soils Bulletin 52.
23. Gibbs, W. (1975). Drought: its definition, delineation and effects. In Drought: Lectures Presented at the 26th Session of the WMO. 11-39.
24. Gumbel, E. (1963). Statistical forecast of droughts. Hydrological sciences journal, 8(1), 5-23.
25. Gusyev, M.A., Hasegawa, A., Magome, J., Kuribayashi, D., Sawano, H., Lee, S. (2015) Drought Assessment in the Pampanga River Basin, the Philippines. Part 1: A Role of Dam Infrastructure in Historical Droughts. Proceedings of the 21st International Congress on Modelling and Simulation (MODSIM 2015), Broadbeach, Queensland, Australia.
26. Hayes, M. J., Svoboda, M. D., Wilhite, D. A., Vanyarkho, O. V. (1999). Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society, 80(3), 429-438.
27. Heddinghaus, T. R., and Sabol, P. (1991). A review of the Palmer Drought Severity Index and where do we go from here. Paper presented at the Proc. 7th Conf. on Applied Climatology, 242-246.
28. Heim Jr, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149-1165.
29. Jones, P.D., Hulme, M., Brifta, K.R., Jones, C.G., Mitchell, J.F.B., Murphy, J.B. (1996). Summer moisture accumulation over Europe in the Hadley center general circulation model based on the Palmer drought severity index. Int. J. Climatol.16 (2), 155–172.
30. Karl, T. R. (1986). The sensitivity of the Palmer drought severity index and Palmer's Z-index to their calibration coefficients including potential evapotranspiration. Journal of Climate and Applied Meteorology, 25(1), 77-86.
31. Kim, T.-W., and Valdés, J. B. (2003). Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering, 8(6), 319-328.
32. Lana, X., Serra, C., and Burgueño, A. (2001). Patterns of monthly rainfall shortage and excess in terms of the standardized precipitation index for Catalonia (NE Spain). International Journal of Climatology, 21(13), 1669-1691.
33. Linsley, R. K., Kohler, M. A., and Paulhus, J. L. (1959). Applied Hydrology. McGraw Hill. New York..
34. Schneider, S. H., and Hare, F. K. (1996). Encyclopedia of climate and weather. Vol. 678. New York: Oxford university press
35. McKee, T. B., Doesken, N. J., and Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Paper presented at the Proceedings of the 8th Conference on Applied Climatology.
36. Michael, J. H. (2003). What is Drought?-Drought Indices. Climate Impacts Specialist, National Drought Mitigation Center, Available from http://ndmc.unl.edu/.
37. Mishra, A. K., and Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216.
38. Mishra, A., and Desai, V. (2005a). Drought forecasting using stochastic models. Stochastic Environmental Research and Risk Assessment, 19(5), 326-339.
39. Mishra, A., and Desai, V. (2005b). Spatial and temporal drought analysis in the Kansabati river basin, India. International Journal of River Basin Management, 3(1), 31-41.
40. Mishra, A., and Singh, V. P. (2009). Analysis of drought severity‐area‐frequency curves using a general circulation model and scenario uncertainty. Journal of Geophysical Research: Atmospheres, 114(D6).
41. Mishra, A., Desai, V., and Singh, V. (2007). Drought forecasting using a hybrid stochastic and neural network model. Journal of Hydrologic Engineering, 12(6), 626-638.
42. Mishra, A., Singh, V., and Desai, V. (2009). Drought characterization: a probabilistic approach. Stochastic Environmental Research and Risk Assessment, 23(1), 41-55.
43. Montaseri, M., Amirataee, B. (2016). Comprehensive stochastic assessment of meteorological drought indices. International Journal of Climatology, 37(2), 998-1013.
44. Özger, M., Mishra, A. K.,Singh, V. P. (2009). Low frequency drought variability associated with climate indices. Journal of hydrology, 364(1-2), 152-162.
45. Palmer, W. C. (1965). Meteorological Drought. Research Paper No.45, U.S., Department of Commerce Weather Bureau, Washington, D.C.
46. Palmer, W. C. (1967). The abnormally dry weather of 1961-1966 in the northeastern United States. New York University Geophysical Research Laboratory Report TR-68-3, 32–56.
47. Palmer, W. C. (1968). Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 21, 156–161.
48. Riebsame, W. E., Changnon Jr, S. A., and Karl, T. R. (1991). Drought and natural resources management in the United States. Impacts and implications of the 1987-89 drought: Westview Press Inc, 174.
49. Shafer, B. A. and L. E. Dezman, “Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas”, Proceedings of the Western Snow Conference, 164–175. Colorado State University, Fort Collins, Colorado, 1982.
50. Shukla, S., Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical research letters, 35(2).
51. Soulé, P. T. (1993). Spatial patterns of drought frequency and duration in the contiguous USA based on multiple drought event definitions. International Journal of Climatology, 12(1), 11-24.
52. Svoboda, M., Hayes, M., Wood, D. (2012). Standardized precipitation index user guide. World Meteorological Organization Geneva, Switzerland.
53. Szalai, S., Szinell, C., Zoboki, J. (2000). Drought monitoring in Hungary. Early warning systems for drought preparedness and drought management, 182-199.
54. UN Secretariat General. (1994). United Nations convention to combat drought and desertification in countries experiencing serious droughts and/or desertification, particularly in Africa. Particularly in Africa.
55. Vicente-Serrano, S. M., López-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C., and Morán-Tejeda, E. (2012). Accurate computation of a streamflow drought index. Journal of Hydrologic Engineering, 17(2), 318-332.
56. Vogel, R. M., Kroll, C. N. (1992). Regional geohydrologic‐geomorphic relationships for the estimation of low‐flow statistics. Water Resources Research, 28(9), 2451-2458.
57. Wilhite, D. A., Glantz, M. H. (1985). Understanding: the drought phenomenon: the role of definitions. Water international, 10(3), 111-120.
58. WMO, W. (1986). Report on drought and countries affected by drought during 1974–1985. In: Geneva, Switzerland: WMO.
59. Yevjevich, V. M. (1967). An objective approach to definitions and investigations of continental hydrologic droughts. Hydrology papers (Colorado State University); no. 23.
60. Zargar, A., Sadiq, R., Naser, B., Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19(NA), 333-349.
校內:2023-06-01公開