簡易檢索 / 詳目顯示

研究生: 褚嶸興
Chu, Rong-Sing
論文名稱: 一個每秒三十二億位元低功耗半速率時脈資料回復電路
A 3.2-Gb/s Low-Power Half-Rate Clock and Data Recovery Circuit
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 88
中文關鍵詞: 時脈資料回復電路
外文關鍵詞: CDR
相關次數: 點閱:66下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文實現了一個每秒三十二億位元低功耗半速率時脈資料回復電路。此架構在頻率預先設定模式和資料回復模式共用兩組閘控制壓控震盪器,使串接時脈資料回復電路中之LC-tank壓控震盪器得以移除。除此之外,本論文還提出了一種主動型電感架構取代原本在晶片中需要大面積的被動電感,其在高速操作下能夠降低功率消耗和縮小晶片面積。此時脈資料回復電路使用TSMC 1P6M 0.18μm CMOS 製程做設計,核心電路面積為0.28 mm2。透過佈局後模擬的驗證,此電路在使用每秒三十二億位元 27-1的偽隨機二進制序列做測試時,總消耗功率為16.48 mW,抖動的峰對峰值與方均根值分別為15.93 ps和2.64 ps。

    This thesis presents a 3.2-Gb/s low-power clock and data recovery (CDR) circuit. This proposed CDR circuit utilizes two half-rate gated voltage-controlled oscillators shared between frequency presetting and data recovery modes to remove the LC-tank voltage-controlled oscillator in a cascaded CDR. Moreover, an active inductive loading technique instead of large-area on-chip passive inductors is proposed to reduce the power consumption and silicon area in high-speed operation. This CDR circuit is designed in TSMC 1P6M 0.18-μm CMOS technology with an active area of 0.28 mm2. Post-layout simulations show that this circuit consumes 16.48 mW. Besides, the peak-to-peak jitter and rms jitter of the recovered clock are 15.93 ps and 2.64 ps for a 3.2-Gb/s 27-1 PRBS, respectively.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 Background Knowledge 4 2.1 Fiber-Optic Transceiver and Receiver 4 2.2 NRZ and RZ Data 5 2.3 Eye Diagram 7 2.4 CDR Architecture 8 2.4.1 PLL-Based CDR 8 2.4.1.1 Dual-VCO Architecture 9 2.4.1.2 Dual-Loop Architecture 11 2.4.2 Oversampling CDR 12 2.4.3 Burst-Mode CDR 19 2.5 Specifying Jitter Performance of a CDR Circuit 21 Chapter 3 Proposed CDR Architecture and and Circuit Description 25 3.1 Introduction 25 3.2 Proposed CDR Architecture 31 3.3 Circuit Description 35 3.3.1 Gated Voltage-Controlled Oscillator (GVCO) 35 3.3.2 Proposed N-Type Active Inductive Load 41 3.3.3 Bias Circuit of GVCO 50 3.3.4 Phase Frequency Detector 51 3.3.5 Charge Pump 53 3.3.6 Lock Detector 53 3.3.7 Loop Filter 57 3.3.8 Current-Mode D Latch and D Flip-Flop 59 Chapter 4 Simulation and Measurement Results 61 4.1 The Simulation of Delay Cells 61 4.2 The Simulation of the GVCO 63 4.3 The Closed-Loop Stability Simulation of the Proposed CDR 65 4.4 The Performance Simulation of the Proposed CDR 68 4.5 Testing Setup and Measurement Results 72 Chapter 5 Conclusion 81 Bibliography 83

    [1] C. F. Liang, S. C. Hwu, and S. I. Liu, “A jitter-tolerance-enhanced CDR using a GDCO-based phase detector,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 1217-1226, May 2008.
    [2] C. F. Liang, H. L. Chu, and S. I. Liu, “10Gbps inductorless CDRs with digital frequency calibration,” IEEE Trans. Circuits and Systems-I: Regular Papers, vol. 55, pp. 2514-2524, Oct. 2008.
    [3] “IEEE standard for a high-performance serial bus,” IEEE Std. 1394-2008, Oct. 2008.
    [4] Behzad Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2003.
    [5] J. Savoj and B. Razavi , “High-Speed CMOS Circuits for Optical Receivers,” Klumer Academic Publishers, 2001.
    [6] M. S. Yu, “Design and Application of a 1.25 Gb/s Clock and Data Recovery Circuit,” MS Thesis, Dpt. of Electrical Engineering, National Taiwan University, June 2002.
    [7] R. Farjad-Rad, “A CMOS 4-PAM Multi-Gbps Serial Link Transceiver,” Ph.D. Thesis, Stanford University, 2000.
    [8] J. W. Chen, “A Tracking Data Recovery System for Inter-Chip Signaling,” MS Thesis, Dpt. of Electrical Engineering, National Taiwan University, June 2000.
    [9] Behzad Razavi, “Design of High-Speed Circuits for Optical Communication Systems,” in Proc. IEEE Custom Integrated Circuits Conf., May. 2001, pp. 315-322.
    [10] J. C. Scheytt, G. Hanke, and U. Langmann, “A 0.155, 0.622, and 2.488 Gb/s Automatic Bit Rate Selecting Clock and Data Recovery IC for Bit Rate Transparent SDH Systems,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1999, pp. 348-49.
    [11] K. Lee, S. Kim, G. Ahn, and D.-K. Jeong, “CMOS serial link for fully duplexed data communication,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 353-363, Apr. 1995.
    [12] S. Kim, K. Lee, D.-K. Jeong, D. D. Lee, and A. Nowatzyk, “An 800 Mbps multi-channel CMOS serial link with 3 X oversampling,” in Proc. IEEE Custom Integrated Circuit Conf., May. 1995, pp. 451-454.
    [13] M. Bazes and R. Ashuri, “A novel CMOS digital clock and data decoder,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 1934-1940, Dec. 1992.
    [14] I. Lee, C. Yoo, W. Kim, S. Chai, and W. Song, “A 622 Mb/s CMOS clock recovery PLL with time-interleaved phase detector array,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1996, pp. 198-199.
    [15] R. Gu, J. M. Tran, H.-C. Lin, A.-L. Yee, and M. Izzard, “A 0.5–3.5 Gb/s low-power low-jitter serial data CMOS transceiver,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1999, pp. 352-353.
    [16] A. Fiedler, R. Mactaggart, J. Welch, and S. Krishnan, “A 1.0625 Gbps transceiver with 2X-oversampling and transmit signal pre-emphasis,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1997, pp. 238-239.
    [17] C.-K. K. Yang, R. Farjad-Rad, and M. A. Horowitz, “A 0.5-μm CMOS 4.0-Gbit/s serial link transceiver with data recovery using oversampling,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 713-722, May 1998.
    [18] Y. Moon, D.-K. Jeong, and G. Ahn, “A 0.6–2.5 Gbaud CMOS tracked 3x oversampling transceiver with dead zone phase detection for robust clock/data recovery,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2001, pp. 212-213.
    [19] S.-H. Lee, M.-S. Hwang, Y. Choi, S. Kim, Y. Moon, B.-J. Lee, D.-K. Jeong, W. Kim, Y.-J. Park, and G. Ahn, “A 5-Gb/s 0.25-μm CMOS Jitter-Tolerant Variable-Interval Oversampling Clock/Data Recovery Circuit,” IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1822-1830, Dec. 2002.
    [20] K. Lee, Y. Shin, S. Kim, et al., “1.04 GBd Low EMI Digital Video Interface System Using Small Swing Serial Link Technique,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 816-823, May 1998.
    [21] G. Kramer and G. Pesavento, Alloptic, Inc., “Ethernet Passive Optical Network (EPON): Building a Next-Generation Optical Access Network,” IEEE Communications Magazine, Topics in LIGHTWAVE, pp. 66-73, Feb. 2002.
    [22] M. Banu and A. E. Dunlop, “A 660 Mb/s CMOS clock recovery circuit with instantaneous locking for NRZ data and burst-mode transmission,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1993, pp. 102-103.
    [23] A. E. Dunlop, W. C. Fischer, M. Banu, and T. Gabara, “150/30 Mb/s CMOS non-oversampled clock and data recovery circuits with instantaneous locking and jitter rejection,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1995, pp. 44-45.
    [24] S. Kaeriyama and M. Mizuno, “A 10Gb/s/ch 50mW 120x130μm² clock and data recovery Circuit,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2003, pp. 70-71.
    [25] P. Han and W. Y. Choi, “1.25/2.5-Gb/s dual bit-rate burst-mode clock recovery circuits in 0.18-m CMOS technology,” in IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 54, pp. 38-42, Jan. 2007.
    [26] M. Nogawa, K. Nishimura, S. Kimura, T. Yoshida, T. Kawamura, M. Togashi, K. Kumozaki, and Y. Ohtomo, “A 10Gb/s burst-mode CDR IC in 0.13μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005, pp. 228-229.
    [27] C. F. Liang, S. C. Hwu, and S. I. Liu, “A 10Gbps burst-mode CDR in 0.18μm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf., Sept. 2006, pp. 559-602.
    [28] C. F. Liang, S. C. Hwu, and S. I. Liu, “A multi-band burst-mode clock and data recovery circuit,” IEICE Trans. on Electronics, vol. E90-C, pp. 802-810, April 2007.
    [29] C. F. Liang and S. I. Liu, “A 20/10/5/2.5 Gbps power-scaling burst-mode CDR circuit using GVCO/Div2/DFF tri-mode cells,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 224-225.
    [30] H. L. Chu, C. L. Hsieh, and S. I. Liu, “20Gb/s 1/4-rate and 40Gb/s 1/8-rate burst-mode CDR circuits in 0.13μm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008, pp. 429-433.
    [31] C. F. Liang, S. C. Hwu, Y. H. Tu, Y. L. Yang, and H. S. Li, “A reference-free, digital background calibration technique for gated-oscillator-based CDR/PLL,” in Proc. Symposium on VLSI Circuits, June 2009, pp. 14-15.
    [32] Y. Ota, R. G. Swartz, M. Banu, and A. E. Dunlop, “High-speed, burst-mode, packet-capable optical receiver and instantaneous clock recovery for optical bus operation,” J. Lightwave Tech., vol. 12, no. 2, pp. 325-331, Feb. 1994.
    [33] J. Hwang, C. Park, and C. Park, “155-Mb/s burst-mode clock recovery circuit using the jitter reduction technique,” IEICE Trans. Commun., vol. E86-B, no. 4, pp. 1423-1426, Apr. 2003.
    [34] Y. G. Kim, C. O. Lee, S. W. Lee, H. S. Chai, H. S. Ryu, and W. Y. Choi, “Novel 622 Mb/s burst-mode clock and data recovery circuits with muxed oscillators,” IEICE Trans. Commun., vol. E86-B, pp. 3288-3292, Nov. 2003.
    [35] T. Lee and 1. Bulzacchelli, “A 155-MHz clock recovery delay- and phase-locked loop,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 1736-1746, Dec. 1992.
    [36] W. Rhee, H. Ainspan, S. Rylov, A. Rylyakov,M. Beakes, D. Friedman, S. Gowda, and M. Soyuer, “A 10-Gb/s CMOS clock and data recovery circuit using a secondary delay-locked loop,” in Proc. IEEE Custom Integrated Circuits Conf., San Jose, CA, Sep. 2003, pp. 81-84.
    [37] M. Ierssel, A. Sheikholeslami, H. Tamura, and W.W. Walker, “A 3.2 Gb/s CDR Using Semi-Blind Oversampling to Achieve High Jitter Tolerance,” IEEE Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2224-2234, Oct. 2007.
    [38] H. L. Chu, C. L. Hsieh and S. I. Liu, “A 10Gb/s inductorless quarter-rate clock and data recovery circuit in 0.13μm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 165-168.
    [39] L. Sun, T. Kwasniewski, and K. Iniewski, “A quadrature output voltage controlled ring oscillator based on three-stage sub-feedback loops,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 2, Orlando, FL, Jul. 1999, pp.176-179.
    [40] Y. Sugimoto and T. Ueno, “The design of a 1 V, 1 GHz CMOS VCO circuit with in-phase and quadrature-phase outputs,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 1, Hong Kong, Jun. 1997, pp. 269-272.
    [41] D.-Y. Jeong, S.H. Chai, W.-C. Song, and G.-H. Cho, “CMOS current-controlled oscillators using multiple-feedback loop architectures,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1997, pp.386-387.
    [42] C. H. Park and B. Kim, “A low-noise, 900-MHz VCO in 0.6-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 586-591, May 1999.
    [43] S. J. Lee, B. Kim, and K. Lee, “A novel high-speed ring oscillator for multiphase clock generation using negative skewed-delay scheme,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 289-291, Feb.1997.
    [44] Y. Eken and J. Uyemura, “A 5.9 GHz voltage-controlled ring oscillator in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 230-233, Jan. 2004.
    [45] N. Haghighi and K. Raahemifar, “A low power and wide frequency range voltage controlled oscillator with quadrature outputs,” in Canadian Conference on Electrical and Computer Engineering, 2008. May. 2008, pp, 1473-1476.
    [46] S. B. Anand and B. Razavi, “A CMOS Clock Recovery Circuit for 2.5Gb/s NRZ Data,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 432-439, Mar. 2001.
    [47] A. Worapishet and M. Thamsirianunt, “An NMOS Inductive Loading Technique for Extended Operating Frequency CMOS Ring Oscillators,” in Midwest Symposium on Circuits and Systems, Aug. 2002, pp. 116-119.
    [48] W. H. Tu, J. Y. Yeh, H. C. Tsai, and C. K. Wang, “A 1.8V 2.5 -5.2 GHz CMOS dual input two-stage ring VCO,” in Proc. Asia -Pacific Conf. Advanced Syst. Integrated Circuits, Aug. 2004, pp. 134-137.
    [49] 劉深淵,楊清淵, “鎖相迴路”, 滄海書局, 2006.
    [50] G. Gutierrez and K. Shyang. “Unaided 2.5 Gb/s silicon bipolar clock and data recovery IC,” in Proc. IEEE Radio Frequency Integrated Circuits Symposium, Jun. 1998, pp. 173-176.
    [51] M. W. Hwang, J. T. Hwang, and G. H. Cho, “Design of high speed CMOS prescaler,” in Proc. Second IEEE Asia Pacific Conf. ASICs. AP-ASIC 2000, Aug. 2000, pp. 87-90.

    下載圖示 校內:2016-08-24公開
    校外:2016-08-24公開
    QR CODE