簡易檢索 / 詳目顯示

研究生: 江佩恩
Chiang, Pei-En
論文名稱: 超低溫共燒陶瓷材料Sr1-xMgxV2O6及LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09)之微波介電特性與應用
Microwave Dielectric Properties and Applications of Ultra-Low Temperature Co-fired Ceramics Using Sr1-xMgxV2O6 and LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09)
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 124
中文關鍵詞: 微波介電特性超低溫共燒陶瓷低損耗高品質因子
外文關鍵詞: Microwave dielectric properties, ULTCC, low-loss, High-Q
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要分為二大部分,第一部分將介紹新型微波介電材料應用於ULTCC技術;第二部分將使用FR4、Al2O3及LiCo0.99Zn0.01VO4三種不同基板設計微帶線濾波器,進而分析其模擬與實驗結果。
    第一部分介紹Sr1-xMgxV2O6 (x= 0.01–0.09)陶瓷之微波介電特性,在燒結溫度為620oC (x=0.07)持溫4小時下,Sr0.93Mg0.07V2O6可得最佳微波介電特性er ~ 9.76、Qxf ~ 32,700 GHz、tf ~ -180 ppm/oC;LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09)陶瓷之微波介電特性,在燒結溫度為650oC (x=0.01)持溫4小時下,LiCo0.99Mg0.01VO4與LiCo0.99Zn0.01VO4可得最佳微波介電特性分別為er ~ 13.05、Qxf ~ 49,800 GHz、tf ~ -74.9 ppm/oC與er ~ 13.06、Qxf ~ 51,600 GHz、tf ~ -58.2 ppm/oC。
    第二部分使用HFSS模擬微帶線濾波器電路,並將模擬電路實作於FR4、Al2O3及LiCo0.99Zn0.01VO4三種不同的基板上,由結果比較可以發現低介電損耗的陶瓷材料能增加濾波器的表現,而較高的Qxf值則可以提高濾波器在頻率選擇上的表現。

    An ultra-low sintering temperature microwave dielectric material Sr1-xMgxV2O6 (x= 0.01–0.09) and LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09) were prepared by conventional solid-state route. Influence of intrinsic and extrinsic factors on the microwave dielectric properties of the ceramics were also studied. Sr0.93Mg0.07V2O6 sintered at 620oC for 4 h exhibited excellent microwave dielectric properties with er ~ 9.76, Qxf ~ 32,700 GHz and tf ~ -180 ppm/oC; LiCo0.99A0.01VO4 (A= Mg, Zn) sintered at 650oC for 4 h revealed excellent microwave dielectric properties: er ~ 13.05, Qxf ~ 49,800 GHz, tf ~ -74.9 ppm/oC, and er ~ 13.06, Qxf ~ 51,600 GHz, tf ~ -58.2 ppm/oC, respectively. Moreover, both ceramics show good chemical compatibility with Al electrodes, which indicate all specimens might be potential candidates for ULTCC applications in particular at high frequency regions.
    Besides, the miniature stubs-loaded square open-loop bandpass filters with diagonal symmetrical feeders and open-stubs were discussed in this paper. According to the results, the performance of filters is improved by using low-loss dielectric ceramics as the substrate, the wave propagation delay of devices for high frequency regions are decreased by using low dielectric constant ceramics and the frequency selection of the filter can be improved by using high Qxf values ceramics.

    摘 要 i 致謝 ix 目錄 x 圖目錄 xiii 表目錄 xix 第一章 緒論 1 1-1前言 1 1-2研究目的 4 第二章 文獻回顧 7 2-1微波介電材料 7 2-1-1微波技術與共振器發展 7 2-1-2陶瓷材料的燒結 10 2-1-3介電共振器原理 15 2-1-4微波介電材料之特性 19 2-1-5拉曼光譜與分子振動模態簡介 28 2-1-6低溫共燒陶瓷(LTCC)技術簡介 29 2-1-7超低溫共燒陶瓷(ULTCC)技術簡介 30 2-2微帶線及濾波器原理 32 2-2-1濾波器原理 32 2-2-2微帶線原理 36 2-2-3微帶線共振器的種類 47 2-2-4共振器間的耦合型式 50 2-2-5濾波器設計 58 第三章 實驗程序與量測儀器 64 3-1微波介電材料之製備 64 3-1-1粉末的製備與球磨 65 3-1-2粉末的煆燒 65 3-1-3加入黏著劑、過篩 65 3-1-4壓模成形、去黏著劑及燒結 65 3-2微波介電材料的量測與分析 67 3-2-1密度測量 67 3-2-2 X-ray分析 67 3-2-3 SEM分析 68 3-2-4拉曼光譜儀分析 68 3-2-5微波介電特性量測方法 69 3-3濾波器的製作過程 76 第四章 實驗結果與討論 78 4-1 Sr1-xMgxV2O6 (x= 0.01–0.09)之微波介電特性 80 4-1-1 Sr1-xMgxV2O6 (x= 0.01–0.09)之XRD相組成分析 80 4-1-2 Sr1-xMgxV2O6 (x= 0.01–0.09)之晶格常數 83 4-1-3 Sr1-xMgxV2O6 (x= 0.01–0.09)之SEM與EDS分析 86 4-1-4 Sr1-xMgxV2O6 (x= 0.01–0.09)之相對密度分析 88 4-1-5 Sr1-xMgxV2O6 (x= 0.01–0.09)之介電係數(er)分析 89 4-1-7 Sr1-xMgxV2O6 (x= 0.01–0.09)之品質因數與共振頻率乘積(Qxf)分析 91 4-1-7 Sr1-xMgxV2O6 (x= 0.01–0.09)之共振頻率溫度飄移係數(tf)分析 94 4-1-8 Sr0.93Mg0.07V2O6與Al共燒 97 4-2 LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09)之微波介電特性 99 4-2-1 LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09)之拉曼光譜分佈 99 4-2-2 LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09)之XRD相組成分析 101 4-2-3 LiCo1-xAxVO4 (A= Mg, Zn)( x= 0–0.09)之晶格常數 91 4-2-4 LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09)之SEM與EDS分析 95 4-2-5 LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09)之相對密度分析 98 4-2-6 LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09)之介電係數(er)分析 99 4-2-7 LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09)之品質因數與共振頻率乘積(Qxf)分析 101 4-2-8 LiCo1-xAxVO4 (A= Mg, Zn) (x= 0–0.09)之共振頻率溫度飄移係數(tf )分析 104 4-2-9 LiCo0.99Zn0.01VO4與Al共燒 107 4-3濾波器的模擬實作 109 4-3-1玻璃纖維基板(FR4)之模擬與實作結果 110 4-3-2氧化鋁基板(Al2O3)之濾波器模擬與實作結果 112 4-3-3 LiCo0.99Zn0.01VO4自製基板之濾波器模擬與實作結果 114 第五章 結論 117 參考文獻 119

    [1] Z. Tan, K. Song, H. B. Bafrooei, B. Liu, J. Wu, J. Xu, H. Lin, and D. Wang, "The effects of TiO2 addition on microwave dielectric properties of Y3MgAl3SiO12 ceramic for 5G application," Ceramics International, vol. 46, no. 10, pp. 15665-15669, 2020.
    [2] A. Hikmaturokhman, K. Ramli, and M. Suryanegara, "Spectrum Considerations for 5G in Indonesia," in 2018 International Conference on ICT for Rural Development (IC-ICTRuDev), 2018: IEEE, pp. 23-28.
    [3] J. Q. Chen, C. C. Li, H. C. Xiang, Y. Tang, and L. Fang, "SrV2O6: An ultralow-firing microwave dielectric ceramic for LTCC applications," Materials Research Bulletin, vol. 100, pp. 377–381, Apr 2018, doi: 10.1016/j.materresbull.2017.12.053.
    [4] K. Rissouli, K. Benkhouja, M. Touaiher, A. A. Salah, K. Jaafari, M. Fahad, and C. Julien, "Structure and conductivity of lithiated vanadates LiMVO4 (M= Mn, Co, Ni)," in Journal de Physique IV (Proceedings), 2005, vol. 123: EDP sciences, pp. 265–269.
    [5] W.-B. Li, H.-H. Xi, and D. Zhou, "Microwave dielectric properties of LiMVO4 (M= Mg, Zn) ceramics with low sintering temperatures," Ceramics International, vol. 41, no. 7, pp. 9063–9068, 2015.
    [6] G. g. Yao, P. Liu, and H. w. Zhang, "Novel Series of Low‐Firing Microwave Dielectric Ceramics: Ca5A4(VO4)6 (A2+= Mg, Zn)," Journal of the American Ceramic Society, vol. 96, no. 6, pp. 1691–1693, 2013.
    [7] G. Yao, P. Liu, X. Zhao, J. Zhou, and H. Zhang, "Low-temperature sintering and microwave dielectric properties of Ca5Co4(VO4)6 ceramics," Journal of the European Ceramic Society, vol. 34, no. 12, pp. 2983–2987, 2014.
    [8] F. K. Vreeland, "A Sine-Wave Electrical Oscillator of the Organ Pipe Type," Physical Review (Series I), vol. 27, no. 4, p. 286, 1908.
    [9] J. Goerth, "Early magnetron development especially in Germany," in 2010 International Conference on the Origins and Evolution of the Cavity Magnetron, 2010: IEEE, pp. 17–22.
    [10] R. H. Varian and S. F. Varian, "A high frequency oscillator and amplifier," Journal of Applied Physics, vol. 10, no. 5, pp. 321–327, 1939.
    [11] M. Thumm, "Historical German contributions to physics and applications of electromagnetic oscillations and waves," in Proc. Int. Conf. on Progress in Nonlinear Science, Nizhny Novgorod, Rusia, 2001, pp. 623–643.
    [12] P. A. Redhead, "The Invention of the Cavity Magnetron and its Introduction into Canada and the USA," La Physique au Canada, pp. 321–328, 2001.
    [13] R. Richtmyer, "Dielectric resonators," Journal of Applied Physics, vol. 10, no. 6, pp. 391–398, 1939.
    [14] S. B. Cohn, "Microwave bandpass filters containing high-Q dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, vol. 16, no. 4, pp. 218–227, 1968.
    [15] W. F. Smith, 材料科學與工程. 高立出版, 1994.
    [16] R. M. German, Sintering theory and practice. 1996.
    [17] H. Hansen, J. Hattel, D. Pedersen, S. Mohanty, S. Andersen, V. Nadimpalli, C. Klingaa, T. Dahmen, and Y. Zhang, "Additive manufacturing of metal components–process-material interaction in different process chains," in IOP Conference Series: Materials Science and Engineering, 2019, vol. 580, no. 1: IOP Publishing, p. 012006.
    [18] R. M. German, P. Suri, and S. J. Park, "Liquid phase sintering," Journal of materials science, vol. 44, no. 1, pp. 1–39, 2009.
    [19] J. Jean and C. Lin, "Coarsening of tungsten particles in W-Ni-Fe alloys," Journal of materials science, vol. 24, no. 2, pp. 500–504, 1989.
    [20] D. M. Pozar, Microwave engineering. John wiley & sons, 2011.
    [21] H. Arwin, M. Poksinski, and K. Johansen, "Total internal reflection ellipsometry: principles and applications," Applied optics, vol. 43, no. 15, pp. 3028-3036, 2004.
    [22] D. Kajfez, "Basic principles give understanding of dielectric waveguides and resonators," Microwave Systems News, vol. 13, pp. 152¬–161, 1983.
    [23] D. Kajfez, A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators," IEEE transactions on Microwave Theory and Techniques, vol. 32, no. 12, pp. 1609–1616, 1984.
    [24] 張盛富, 通信工程, 戴明鳳, and 物理學, 無線通信之射頻被動電路設計. 全華圖書, 2011.
    [25] 鄭景太, 淺談高頻低損失介電材料, 工業材料, vol. 176, 2001.
    [26] A. J. Moulson and J. M. Herbert, Electroceramics: materials, properties, applications. John Wiley & Sons, 2003.
    [27] W. Kingery, "Fine Ceramics," Science, vol. 239, no. 4842, pp. 925–926, 1988.
    [28] J. P. Schaffer, The science and design of engineering materials. Irwin Professional Publishing, 1999.
    [29] E. C. Liang, "An overview of high Q TE mode dielectric resonators and applications," Microwave journal, vol. 4, 2015.
    [30] M. Silva, T. Fernandes, and A. Sombra, "An alternative method for the measurement of the microwave temperature coefficient of resonant frequency (τf)," Journal of Applied Physics, vol. 112, no. 7, p. 074106, 2012.
    [31] S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, "Effect of porosity and grain size on the microwave dielectric properties of sintered alumina," Journal of the American Ceramic Society, vol. 80, no. 7, pp. 1885–1888, 1997.
    [32] H. M. Z. D. G. Shuping, "Research on the Influential Factors of Microwave Dielectric Ceramics [J]," Materials Review, vol. 8, 2004.
    [33] H. Yu, X. Bai, G. Qian, H. Wei, X. Gong, J. Jin, and Z. Li, "Impact of ultraviolet radiation on the aging properties of SBS-modified asphalt binders," Polymers, vol. 11, no. 7, p. 1111, 2019.
    [34] M. T. Sebastian and H. Jantunen, "Low loss dielectric materials for LTCC applications: a review," International Materials Reviews, vol. 53, no. 2, pp. 57–90, 2008.
    [35] Y. Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology. Springer Science & Business Media, 2005.
    [36] D. Zhou, H. Wang, X. Yao, and L. X. Pang, "Microwave dielectric properties of low temperature firing Bi2Mo2O9 ceramic," Journal of the American Ceramic Society, vol. 91, no. 10, pp. 3419–3422, 2008.
    [37] D. K. Kwon, M. T. Lanagan, and T. R. Shrout, "Microwave dielectric properties and low‐temperature cofiring of BaTe4O9 with aluminum metal electrode," Journal of the American Ceramic Society, vol. 88, no. 12, pp. 3419–3422, 2005.
    [38] L. Fang, C. Su, H. Zhou, Z. Wei, and H. Zhang, "Novel low‐firing microwave dielectric ceramic LiCa3MgV3O12 with low dielectric loss," Journal of the American Ceramic Society, vol. 96, no. 3, pp. 688–690, 2013.
    [39] D. Zhou, C. A. Randall, L.-X. Pang, H. Wang, J. Guo, G.-Q. Zhang, X.-G. Wu, L. Shui, and X. Yao, "Microwave dielectric properties of Li2WO4 ceramic with ultra‐low sintering temperature," Journal of the American Ceramic Society, vol. 94, no. 2, pp. 348–350, 2011.
    [40] M. Ohashi, H. Ogawa, A. Kan, and E. Tanaka, "Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic," Journal of the European Ceramic Society, vol. 25, no. 12, pp. 2877–2881, 2005.
    [41] S.-Y. Chang, H.-F. Pai, C.-F. Tseng, and C.-K. Tsai, "Microwave dielectric properties of ultra-low temperature fired Li3BO3 ceramics," J. Alloy. Compd., vol. 698, pp. 814–818, 2017.
    [42] X. Chen, W. Zhang, B. Zalinska, I. Sterianou, S. Bai, and I. M. Reaney, "Low sintering temperature microwave dielectric ceramics and composites based on Bi2O3–B2O3," Journal of the American Ceramic Society, vol. 95, no. 10, pp. 3207–3213, 2012.
    [43] NAR Labs, "行動裝置的明珠,淺談射頻功率放大器(PA)." Retrieved July 6, 2021, from https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0J154561220884929254.
    [44] K. Lacanette, "A basic introduction to filters-active, passive, and switched-capacitor," National Semiconductor Corporation, http://www. swarthmore. edu/NatSci/echeeve1/Ref/DataSheet/Inttofilters. pdf,(Apr. 1991), vol. 22, 1991.
    [45] R. L. Geiger, P. E. Allen, and N. R. Strader, "VLSI design techniques for analog and digital circuits," 1990.
    [46] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE transactions on microwave theory and techniques, vol. 16, no. 6, pp. 342–350, 1968.
    [47] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
    [48] T. L, Wu, "Microwave Filter Design Chp4. Transmission Lines and Components," (2011, Febuaray 17). Retrieved July 6, 2021, from http://ntuemc.tw/upload/file/2011021716275842131.pdf.
    [49] R. Garg, I. Bahl, and M. Bozzi, Microstrip lines and slotlines. Artech house, 2013.
    [50] G. Kompa, Practical microstrip design and applications. Artech House London, England, 2005.
    [51] 趙工, "元器件高頻模型及微帶元件." Retrieved July 9, 2021, from http://www.dwenzhao.cn/profession/RF/componentrf.html.
    [52] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters, impedance-matching networks, and coupling structures. Artech house, 1980.
    [53] E. J. Denlinger, "Losses of microstrip lines," IEEE Transactions on Microwave Theory and Techniques, vol. 28, no. 6, pp. 513–522, 1980.
    [54] PIFA - The Planar Inverted-F Antenna, "Microstrip Antennas." Retrieved July 6, 2021, from https://www.antenna-theory.com/antennas/patches/pifa.php.
    [55] W. Li, X. Cao, H. Lin, and Z.-X. Tang, "Design of an Interdigital Band-Pass Filter for Out-of-Band Rejection Improvement," Progress In Electromagnetics Research Letters, vol. 64, pp. 105-110, 2016.
    [56] S.-F. Chang, J.-L. Chen, Y.-H. Jeng, and C.-T. Wu, "New high-directivity coupler design with coupled spurlines," IEEE microwave and wireless components letters, vol. 14, no. 2, pp. 65–67, 2004.
    [57] T. L, Wu, "Microwave Filter Design Chp. 5 Bandpass Filter," (2011, June 20). Retrieved July 6, 2021, from http://ntuemc.tw/upload/file/2011062010032057680.pdf.
    [58] K. Kuang, F. Kim, and S. S. Cahill, RF and microwave microelectronics packaging. Springer, 2010.
    [59] W. Prasetyo, D. W. Astuti, S. Attamimi, and M. Alaydrus, "Study of rectangular open loop resonators with groundings for low and high coupling," in 2016 Asia-Pacific Microwave Conference (APMC), 2016: IEEE, pp. 1–4.
    [60] J.-S. Hong and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Transactions on Microwave theory and Techniques, vol. 44, no. 11, pp. 2099–2109, 1996.
    [61] A. Faroqi, M. A. Ramdhani, D. D. D. Andika, and S. Soedarsono, "Design of 2.75-2.85 GHz frequency microstrip band pass filter with square open-loop resonator in Radar Method," International journal of engineering and technology, vol. 7, p. 711, 2018.
    [62] A. Chinig, J. Zbitou, A. Errkik, L. Elabdellaoui, A. Tajmouati, A. Tribak, and M. Latrach, "A new microstrip diplexer using open-loop resonators," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, vol. 13, no. 2, pp. 185–196, 2014.
    [63] B. Hakki and P. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Transactions on Microwave Theory and Techniques, vol. 8, no. 4, pp. 402–410, 1960.
    [64] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators," IEEE Transactions on Microwave Theory and Techniques, vol. 18, no. 8, pp. 476–485, 1970.
    [65] P. Wheless and D. Kajfez, "The use of higher resonant modes in measuring the dielectric constant of dielectric resonators," in 1985 IEEE MTT-S International Microwave Symposium Digest, 1985: IEEE, pp. 473–476.
    [66] Y. Kobayashi and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method," IEEE Transactions on Microwave Theory and Techniques, vol. 33, no. 7, pp. 586–592, 1985.
    [67] 瞿大雄, "電磁波實驗:實驗六長方型波導及衰減器與共振腔," 2018. Retrieved July 6, 2021, from http://cc.ee.ntu.edu.tw/~thc/course_emexp/slide/Exp%20-%2006.pdf.
    [68] M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, and J. H. Paik, "Formation process and microwave dielectric properties of the R2V2O7 (R= Ba, Sr, and Ca) ceramics," Journal of the American Ceramic Society, vol. 92, no. 12, pp. 3092–3094, 2009.
    [69] R. D. Shannon, "Dielectric polarizabilities of ions in oxides and fluorides," Journal of Applied physics, vol. 73, no. 1, pp. 348–366, 1993.
    [70] E. S. Kim, B. S. Chun, R. Freer, and R. J. Cernik, "Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics," Journal of the European Ceramic Society, vol. 30, no. 7, pp. 1731–1736, 2010.
    [71] N. Brese and M. O'keeffe, "Bond-valence parameters for solids," Acta Crystallographica Section B: Structural Science, vol. 47, no. 2, pp. 192–197, 1991.
    [72] H. S. Park, K. H. Yoon, and E. S. Kim, "Effect of bond valence on microwave dielectric properties of complex perovskite ceramics," Materials chemistry and physics, vol. 79, no. 2–3, pp. 181-183, 2003.
    [73] T. Thongtem, A. Phuruangrat, and S. Thongtem, "Analyses of nano-crystalline LiCoVO4 prepared by solvothermal reaction," Materials Letters, vol. 60, no. 29–30, pp. 3776–3781, 2006.

    無法下載圖示 校內:2026-07-23公開
    校外:2026-07-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE