| 研究生: |
林文俊 Lin, Wen-Juin |
|---|---|
| 論文名稱: |
Ad-Hoc網路能量效益最佳化 Energy Efficiency Optimization of Ad-Hoc Networks |
| 指導教授: |
郭文光
Kuo, Wen-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 跨層最佳化 、能量效益 、ad-hoc網路 |
| 外文關鍵詞: | Cross-Optimization, Energy Efficiency, ad-hoc networks |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於能源的短缺,所以節能的概念越來越受到人們的重視,本篇論文探討Ad-hoc網路能量效益的最佳化,根據跨層最佳化的概念考慮點對點流量分配、排程與功率控制等問題來制定能量效益問題。接著透過重新制定限性化技術(Reformulation-Linearization Technique)與Dinkelbach-type algorithm將NP-hard的能量效益問題放鬆且搭配分支定限求解程序(branch-and-bound Procedure)來得到最佳的資源分配,此外我們還結合一些限制式來限制能量效益的變化與資源分配的公平性,進而使得我們的系統更加穩定。
In recent years, Saving of energy is more important due to Lack of energy, We focus on Energy Efficiency Optimization of Ad-Hoc Networks. We Consider Flow distribution、Scheduling and Power Control base on the concept of cross-layer optimization, and Formulate the Energy Efficiency Problem. Then, we develop a solution procedure based on the branch-and-bound framework. Within this framework, we employ a reformulation linearization technique (RLT) and Dinkelbach-type algorithm. We use numerical results to validate the efficacy of this solution procedure and offer insights on ad-hoc networks.
[1]H.D. Sherali and W.P. Adams, A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, chapter 8. Kluwer Academic Publishers, 1999.
[2]R. M. et al. Cross-layer design for lifetime maximization in interference-limited wireless sensor networks. EEE Infocom, 2005.
[3]M. L. Sichitiu. ross-layer scheduling for power e_ciency in wireless sensor networks. IEEE Infocom,2004.
[4]M. Chiang. To layer or not to layer: Balancing transport and physical layers in wireless multihop networks. IEEE Infocom, 4, 2004.
[5]L. Bui, A. Ery?lmaz, and R. Srikant. Joint asynchronous congestion control and distributed scheduling for multi-hop wireless networks. Department of Electrical and Computer Engineering.
[6]L. Chen, S. H. Low, M. Chiang, and J. C. Doyle. Optimal cross-layer congestion control, routing and scheduling design in ad hoc wireless network.
[7]B. Johansson, P. Soldati, and M. Johansson. Mathematical decomposition techniques for distributed cross-layer optimization of data networks. IEEE Journal on Selected Areas in Communications, 24(8):1535{1547, 2006.
[8]M. Johansson and L. Xiao. Cross-layer optimization of wireless networks using nonlinear column generation. IEEE Transactions on Wireless Communications, 5(2):435{445, 2006.
[9]S. J. Kim, X. Wang, and M. Madihian. Cross-layer design of wireless multihop backhaul networks with multiantenna beamforming. IEEE Trans. Mob. Comput, 6(11):1259{1269, 2007.
[10]J. Papandriopoulos, S. Dey, and J. Evans. Optimal and distributed protocols for cross-layer design of physical and transport layers in manets. IEEE Trans. on Networking, 16(6):1392{1405, 2008.
[11]Yi Shi,Y. Thomas Hou, Hanif D. Sherali. Cross-Layer Optimization for Data Rate Utility Problem in UWB-Based Ad Hoc Networks. IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO.6, JUNE 2008.
[12]Yi Shi,Y. Thomas Hou, Sastry Kompella, Hanif D. Sherali. Maximizing Capacity in Multi-Hop Cognitive Radio Networks under the SINR Model. IEEE Transactions on Mobile Computing. VOL. 10, NO. X, XXXXXXX 2011
[13]M. Chiang, C. W. Tan, D. P. Palomar, D. O'Neill, and D. Julian. Power control by geometric programming. IEEE Transactions on Wireless Communications, 6(7):2640{2651, 2007.
[14]S. S. Ju. Optimal resources allocation for a cognitive network. Master's thesis, NCKU, 2009.
[15]Matteo Fischetti, Fred Glover and Andrea Lodi, “The feasibility pump”, Mathematics Subject Classification (1991): 90C06, 90C10, 90C11, 90C27, 90C59.
[16]B. Radunovic and J.-Y. Le Boudec, “Optimal Power Control, Scheduling, and Routing in UWB Networks,” IEEE J. Selected Areas in Comm., vol. 22, no. 7, pp. 1252-1270, Sept. 2004.
[17]M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, pp. 245-248. W.H. Freeman, 1979.
[18]M. Chiang, C. W. Tan, D. P. Palomar, D. O'Neill, and D. Julian. Power control by geometric programming. IEEE Transactions on Wireless Communications, 6(7):2640{2651, 2007.
[19]M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, pp. 245-248. W.H. Freeman, 1979.
[20]A. Rubinov and X. Yang, Lagrange-Type Functions in Constrained Non-Convex Optimization. Kluwer Academic Publishers, 2003.
[21]H.D. Sherali and W.P. Adams, A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems,chapter 8. Kluwer Academic Publishers, 1999.
[22]J. P. Crouzeix, J. A. Ferland, and S. Schaible. An algorithm for generalized fractional programs. Journal of Optimization Theory and Applications, 50:183{187, 1986.
校內:2016-08-24公開