簡易檢索 / 詳目顯示

研究生: 陳世軒
Chen, Shih-Syuan
論文名稱: 微流量氣流移除非共平面產品表面異物的製程參數分析
Process Parameter Analysis for Removing Non-Coplanar Surface Contaminants Using Micro-Flow Air Stream
指導教授: 吳毓庭
Wu, Yu-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 63
中文關鍵詞: 顆粒移除有限元素法製程參數ANSYS
外文關鍵詞: Particle removal, Finite Element Method, Process Parameters, ANSYS
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體為現代生活中不可或缺的部分。本研究使用有限元素法分析軟體ANSYS模擬顆粒被氣源移除的狀況。欲測試結構為光學玻璃(CIS)與矽光子晶片(Silicon Photonics),顆粒粒徑有5μm、10μm、20μm、50μm等等,主要可以分為三組情況進行測試。第一個是在所有條件皆相同的情況下將氣源的角度進行改變,分別以0°、15°、30°、45°,分別進行模擬,發現其中是以45°進行顆粒移除會有最好的效果。第二種情況為測試不同入流速度以及出口負壓,分別為0m/s、20m/s、40m/s、60m/s和0Pa、2500Pa、5000Pa、7500Pa,總共可以模擬出16種情況,其中雖然以60m/s以及7500Pa的組合效果最佳,但若以整體數據而言,在高入流速度以及高出口負壓的情況下,增加兩者對顆粒移除效益較低。第三種為模擬不同顆粒大小以及不同濕度的狀況,其中可以發現顆粒越小愈難被移除,而在將濕度由50%調整為20%後,各種尺寸的顆粒在移除效果上都有提升,其中又以小顆粒增加幅度為最大。最後可以得到,在顆粒的移除上以氣源旋轉45°、入流速度60m/s、出口負壓7500Pa以及濕度為20%的時候會得到相對好的移除效率。

    Semiconductors are an indispensable part of modern life. This study uses finite element method (FEM) analysis software, ANSYS, to simulate the removal of particles by an air source. The structures to be tested include optical glass (CIS) and silicon photonics chips, with particle sizes of 5μm, 10μm, 20μm, and 50μm. The tests are divided into three main scenarios.The first scenario changes the angle of the air source under identical conditions, simulating angles of 0°, 15°, 30°, and 45°. It was found that a 45° angle is the most effective for particle removal.The second scenario tests different inlet velocities and outlet pressures, specifically 0m/s, 20m/s, 40m/s, 60m/s, and 0Pa, 2500Pa, 5000Pa, 7500Pa. A total of 16 conditions are simulated. Although the combination of 60m/s and 7500Pa yielded the best results, increasing both parameters shows diminishing returns on particle removal efficiency at high inlet velocities and high outlet pressures.The third scenario simulates different particle sizes and humidity levels. It was found that smaller particles are more difficult to remove. However, when the humidity is adjusted from 50% to 20%, the removal efficiency improves for all particle sizes, with the smallest particles showing the greatest improvement.In conclusion, the optimal conditions for particle removal are a 45° air source angle, an inlet velocity of 60m/s, an outlet pressure of 7500Pa, and a humidity level of 20%.

    摘要 II ABSTRACT III 誌謝 IV CONTENTS VI LIST OF TABLES VIII LIST OF FIGURES IX Chapter 1 INTRODUCTION 1 1.1 Preface 1 1.2 Background 2 1.3 Motivation and Objectives 3 1.4 Literature Review 4 1.5 Content of Research 7 Chapter 2 THEORY AND NUMERICAL METHODS 9 2.1 Solidworks Introduction 9 2.2 ANSYS Introduction 10 2.2.1 Pre-Processing Module 12 2.2.2 Analysis Computation Module 13 2.2.3 Post-Processing Module 15 2.3 DPM 16 2.3.1 Background and Overview 16 2.3.2 Basic Principles of DPM 16 2.3.3 Advantages of DPM 17 2.3.4 Theoretical Basis of DPM 18 Chapter 3 METHODS 21 3.1 Product Geometric Structure 21 3.2 DUC Parameter Settings 23 3.2.1 Particle Material Selection 26 3.3 Mesh Element Type 26 3.4 Mesh Generation 28 3.5 Boundary Condition Setup 31 3.6 Data Compilation and Removal Rate Definition 36 Chapter 4 RESULT AND DISCUSSION 37 4.1 Particle Removal Rate Under Different Inlet and Outlet Conditions 37 4.2 Particle Removal Rate at Different Angles 38 4.3 Particle Removal Rate at Different Particle Sizes and Humidity Levels 47 Chapter 5 CONCLUSIONS AND FUTURE PERSPECTIVE 49 5.1 Conclusions 49 5.2 Future Outlook 50 Reference 51

    [1] C. Wu, K. Nandakumar, A. Berrouk, and H. Kruggel-Emden. Enforcing mass conservation in DPM-CFD models of dense particulate flows. Chemical engineering journal 174(1), 475-481,(2011).
    [2] L. Stone, D. Hastie, and S. Zigan. Using a coupled CFD–DPM approach to predict particle settling in a horizontal air stream. Advanced Powder Technology 30(4), 869-878,(2019).
    [3] X. Chen and J.A. Elliott. On the scaling law of JKR contact model for coarse-grained cohesive particles. Chemical Engineering Science 227115906,(2020).
    [4] M.M. Rahman, M. Zhao, M.S. Islam, K. Dong, and S.C. Saha. Aging effects on airflow distribution and micron-particle transport and deposition in a human lung using CFD-DPM approach. Advanced Powder Technology 32(10), 3506-3516,(2021).
    [5] R. Li, Z. Sun, A. Li, Y. Li, and Z. Wang. Design optimization of hemispherical protrusion for mitigating elbow erosion via CFD-DPM. Powder Technology 398117128,(2022).
    [6] K. Li, J. Peng, Y. Li, D. Ge, and J. Li. Performance prediction of solid particle erosion in fluidic oscillators for fluidic hammers based on CFD-DPM. Powder Technology 428118819,(2023).
    [7] R. Huang, Y. Ma, H. Li, C. Sun, J. Liu, S. Zhang, H. Wang, and B. Hao. Operation parameters multi-objective optimization method of large vertical mill based on CFD-DPM. Advanced Powder Technology 34(6), 104014,(2023).
    [8] X. Dou, W. Xiang, B. Li, M. Ju, A. Li, D. Zhang, and Y. Li. CFD-DPM modelling of solid particle erosion on weld reinforcement height in liquid-solid high shear flows. Powder Technology 427118773,(2023).
    [9] H. Fatahian, E. Fatahian, and R. Erfani. Square cyclone separator: performance analysis optimization and operating condition variations using CFD-DPM and Taguchi method. Powder Technology 428118789,(2023).
    [10] D. Xu and Y. Shen. A novel CFD-DEM-DPM modelling of fluid-particles-fines reacting flows. Chemical Engineering Science 292120014,(2024).

    無法下載圖示 校內:2029-08-02公開
    校外:2029-08-02公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE