| 研究生: |
楊朝仁 Yang, Chao-Jen |
|---|---|
| 論文名稱: |
經光化學改質後氧化石墨烯濾膜於水處理之應用 Filtration Membranes Fabricated by Photochemically Modified Graphene Oxide Towards Water Treatment |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 氧化石墨烯 、太陽能改質 、天然有機物 、膜過濾 |
| 外文關鍵詞: | Graphene Oxide, Solar Modification, Natural Organic Matter, Membrane Filtration |
| 相關次數: | 點閱:131 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化石墨烯是一種兩維的奈米材料,它具有廣泛的應用潛力如光電、光催化、奈米醫學、環境整治等等。有越來越多的石墨烯衍生物被用於製造高性能的濾膜,並用於去除水中之污染物。近年來的研究大多以改質氧化石墨烯結構之方式來製作濾膜。雖然這些改質方法是有效的,但在製作過程中它們所消耗的能量與其排出的廢棄物可能導致更多的碳足跡,進而污染我們的環境。
本研究之目的是以環保的太陽能來改質氧化石墨烯,以製作高性能的濾膜,且在其改質過程中沒有任何化學藥劑的使用。本研究發現,經過光化學改質後之氧化石墨烯濾膜能有效提高污染物的去除率與通量(80 ± 0.3 LMH/bar),在pH=8時,其通量約是原始的氧化石墨烯濾膜的兩倍。同時在pH值的變化下,光化學改質後比起原始的氧化石墨烯濾膜擁有更加穩定的過濾表現。此外,與其他超濾膜與原始的氧化石墨烯濾膜相比,光化學改質後之氧化石墨烯濾膜展現出較高的天然有機物去除率。本研究提供了氧化石墨烯濾膜一個新的改質方法。
Graphene oxide, a two-dimensional nanomaterial, is promising in a range of proposed applications such as light-emitting electronics, photocatalysis, nanomedicine, environmental remediation to name a few. Increasingly, graphene-based nanomaterials are used to fabricate high-performance filtration membranes that can remove pollutants from water for a range of water treatment purposes. These recent studies have mostly used as-prepared GO to create water filtration membranes with limited work involving structurally modified GO materials. While these modification processes are effective, they could leave greater ecological footprints as a result of the wastes discharged and energy consumption.
This research was to present a greener method that uses solar energy without any chemical addition to tune the properties of GO that is used to fabricate high-performance water filtration membranes. It was found that the photochemical modification GO membrane exhibit enhanced pollutant rejection and permeate fluxes (80 ± 0.3 LMH/bar), roughly 2 times higher than pristine GO membranes in pH = 8. And, the filtration performance of photochemical modification GO membrane was stable than pristine GO membranes with pH chance. In addition to, photochemical modification GO membranes exhibited a greater NOM removal compared to GO membranes and commercially available UF membranes. This provides a new modification method of the GO membrane for enhancing the filtration performance.
(1) Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24 (19), 10560–10564.
(2) Perreault, F.; Faria, A. F. de; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44 (16), 5861–5896.
(3) Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4 (4), 217–224.
(4) Brodie, B. C. On the Atomic Weight of Graphite. Philos. Trans. R. Soc. Lond. 1859, 149, 249–259.
(5) Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure. Berichte Dtsch. Chem. Ges. 1898, 31 (2), 1481–1487.
(6) Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339–1339.
(7) Bai, H.; Li, C.; Shi, G. Functional composite materials based on chemically converted graphene. Adv. Mater. Deerfield Beach Fla 2011, 23 (9), 1089–1115.
(8) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4 (8), 4806–4814.
(9) Wu, Z.-S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H.-M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 2009, 47 (2), 493–499.
(10) Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon 2012, 50 (9), 3210–3228.
(11) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558–1565.
(12) Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Weinh. Bergstr. Ger. 2009, 15 (25), 6116–6120.
(13) Hou, W.-C.; Chowdhury, I.; Goodwin, D. G.; Henderson, W. M.; Fairbrother, D. H.; Bouchard, D.; Zepp, R. G. Photochemical Transformation of Graphene Oxide in Sunlight. Environ. Sci. Technol. 2015, 49 (6), 3435–3443.
(14) Ratnayaka; Ratnayaka, D. D.; Brandt, M. J.; Johnson, M. Water Supply; Butterworth-Heinemann, 2009.
(15) Hegab, H. M.; Zou, L. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. J. Membr. Sci. 2015, 484, 95–106.
(16) Hu, M.; Mi, B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes. Environ. Sci. Technol. 2013, 47 (8), 3715–3723.
(17) Zhang, Y.; Zhang, S.; Chung, T.-S. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration. Environ. Sci. Technol. 2015, 49 (16), 10235–10242.
(18) Qiu, L.; Zhang, X.; Yang, W.; Wang, Y.; Simon, G. P.; Li, D. Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chem. Commun. 2011, 47 (20), 5810–5812.
(19) Han, Y.; Xu, Z.; Gao, C. Ultrathin Graphene Nanofiltration Membrane for Water Purification. Adv. Funct. Mater. 2013, 23 (29), 3693–3700.
(20) Han, Y.; Jiang, Y.; Gao, C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl. Mater. Interfaces 2015, 7 (15), 8147–8155.
(21) Huang, H.; Mao, Y.; Ying, Y.; Liu, Y.; Sun, L.; Peng, X. Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes. Chem. Commun. 2013, 49 (53), 5963–5965.
(22) Huang, H.; Song, Z.; Wei, N.; Shi, L.; Mao, Y.; Ying, Y.; Sun, L.; Xu, Z.; Peng, X. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 2013, 4, 2979.
(23) Goh, K.; Setiawan, L.; Wei, L.; Si, R.; Fane, A. G.; Wang, R.; Chen, Y. Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. J. Membr. Sci. 2015, 474, 244–253.
(24) Wang, L.; Wang, N.; Li, J.; Li, J.; Bian, W.; Ji, S. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance. Sep. Purif. Technol. 2016, 160, 123–131.
(25) Xia, S.; Ni, M.; Zhu, T.; Zhao, Y.; Li, N. Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter. Desalination 2015, 371, 78–87.
(26) Lee, J.; Chae, H.-R.; Won, Y. J.; Lee, K.; Lee, C.-H.; Lee, H. H.; Kim, I.-C.; Lee, J. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Membr. Sci. 2013, 448, 223–230.
(27) Zhao, C.; Xu, X.; Chen, J.; Wang, G.; Yang, F. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 2014, 340, 59–66.
(28) Xia, S.; Ni, M. Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal. J. Membr. Sci. 2015, 473, 54–62.
(29) Song, J. J.; Huang, Y.; Nam, S.-W.; Yu, M.; Heo, J.; Her, N.; Flora, J. R. V.; Yoon, Y. Ultrathin graphene oxide membranes for the removal of humic acid. Sep. Purif. Technol. 2015, 144, 162–167.
(30) Yin, J.; Zhu, G.; Deng, B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 2016, 379, 93–101.
(31) Gauthier, T. D.; Shane, E. C.; Guerin, W. F.; Seitz, W. R.; Grant, C. L. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ. Sci. Technol. 1986, 20 (11), 1162–1166.
(32) Lai, C.-H.; Chou, Y.-C.; Yeh, H.-H. Assessing the interaction effects of coagulation pretreatment and membrane material on UF fouling control using HPSEC combined with peak-fitting. J. Membr. Sci. 2015, 474, 207–214.
(33) Prola, L. D. T.; Acayanka, E.; Lima, E. C.; Bestetti, C.; Santos, W. O.; Pavan, F. A.; Dias, S. L. P.; Tarley, C. R. T. Application of aqai stalks as biosorbent for the removal of Evans Blue and Vilmafix Red RR-2B dyes from aqueous solutions. Desalination Water Treat. 2013, 51 (22–24), 4582–4592.
(34) Suk, M. E.; Aluru, N. R. Water Transport through Ultrathin Graphene. J. Phys. Chem. Lett. 2010, 1 (10), 1590–1594.
(35) Hu, M.; Mi, B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes. Environ. Sci. Technol. 2013, 47 (8), 3715–3723.
(36) Huang, H.; Mao, Y.; Ying, Y.; Liu, Y.; Sun, L.; Peng, X. Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes. Chem. Commun. 2013, 49 (53), 5963–5965.
(37) Ramette, R. W.; Sandell, E. B. Rhodamine B Equilibria. J. Am. Chem. Soc. 1956, 78 (19), 4872–4878.
(38) Chen, W.; Westerhoff, P.; Leenheer, J. A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37 (24), 5701–5710.
(39) Huber, S. A.; Balz, A.; Abert, M.; Pronk, W. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography – organic carbon detection – organic nitrogen detection (LC-OCD-OND). Water Res. 2011, 45 (2), 879–885.
(40) Lai, C.-H.; Chou, Y.-C.; Yeh, H.-H. Assessing the interaction effects of coagulation pretreatment and membrane material on UF fouling control using HPSEC combined with peak-fitting. J. Membr. Sci. 2015, 474, 207–214.
(41) Her, N.; Amy, G.; McKnight, D.; Sohn, J.; Yoon, Y. Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. Water Res. 2003, 37 (17), 4295–4303.
(42) Pei, Z.; Li, L.; Sun, L.; Zhang, S.; Shan, X.; Yang, S.; Wen, B. Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 2013, 51, 156–163.
(43) Wang, J.; Chen, Z.; Chen, B. Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets. Environ. Sci. Technol. 2014, 48 (9), 4817–4825.
(44) Hung, W.-S.; Tsou, C.-H.; De Guzman, M.; An, Q.-F.; Liu, Y.-L.; Zhang, Y.-M.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Cross-Linking with Diamine Monomers To Prepare Composite Graphene Oxide-Framework Membranes with Varying d-Spacing. Chem. Mater. 2014, 26 (9), 2983–2990.
(45) Zhang, Y.; Zhang, S.; Chung, T.-S. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration. Environ. Sci. Technol. 2015, 49 (16), 10235–10242.
(46) Tsou, C.-H.; An, Q.-F.; Lo, S.-C.; De Guzman, M.; Hung, W.-S.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J. Membr. Sci. 2015, 477, 93–100.