簡易檢索 / 詳目顯示

研究生: 吳政泰
Wu, Cheng-Tai
論文名稱: 採用旋轉功率潮流控制器於單機無限匯流排系統之穩定度分析
Stability Analysis of a One-Machine Infinite-Bus System Using Rotary Power-Flow Controllers
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 194
中文關鍵詞: 單機無限匯流排系統旋轉功率潮流控制器旋轉相位移變壓器穩定度
外文關鍵詞: One-machine infinite-bus system, rotary power-flow controller, rotary phase shifting transformer, stability
相關次數: 點閱:127下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文於單部同步發電機經並聯輸電線併聯電網做為研究系統,並採用旋轉功率潮流控器做為控制系統,分別完成該系統在穩態、動態與暫態之穩定度分析。本論文於三相平衡系統下利用三相電路模型,分別建立三相三線式同步發電機、三相旋轉相位移變壓器、直流馬達、等效質量-彈簧-阻尼器模型與旋轉功率潮流控制器之控制系統等模型。本論文於穩態特性方面,分析包含於旋轉功率潮流控制器的兩部旋轉相位移變壓器位於各角度組合時,對系統功率潮流之影響與系統特徵值之變化。在動態與暫態模擬方面,分別完成了同步發電機之轉矩干擾與電網端發生三相短路故障等模擬結果,並比較原系統、含與不含控制系統之旋轉功率潮流控制器之間的差異。

    This thesis employs a rotary power-flow controller (RPFC) as the control system to perform stability analysis of a one-machine infinite-bus (OMIB) system under steady-state, dynamic, and transient conditions. The three-phase circuit model is developed to establish the models for the three-phase three-wire synchronous generator, the three-phase rotary phase shifting transformer (RPST), the direct-current motor, the equivalent mass-spring-damper system model and the control system of the RPFC under three-phase balanced conditions. In this thesis, the steady-state characteristics of power flow and eigenvalues of the studied system under different angle pairs of the two RPSTs contained in RPFC are analyzed. Dynamic and transient simulations of the studied system subject to a torque disturbance and a three-phase fault at the power grid are also carried out, respectively. The responses of the studied system containing the RPFC with and without the control system are also compared.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 符號說明 XIII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 2 1-3 本論文之貢獻 7 1-4 研究內容概述 8 第二章 系統與數學模型 10 2-1 前言 10 2-2 系統架構 11 2-3 同步發電機三相模型 14 2-4 同步發電機直-交軸模型 20 2-5 旋轉相位移變壓三相模型 21 2-6 直流馬達數學模型 26 2-7 等效質量-彈簧-阻尼器系統模型 28 2-8 直流馬達之控制系統模型 29 第三章 系統穩態分析 33 3-1 前言 33 3-2 旋轉相位移變壓器於各種不同角度下之系統功率潮流分析 33 3-3 旋轉相位移變壓器於各種不同角度下之系統特徵值 37 3-4 系統穩態功率潮流分析於變動同步發電機之端電壓與旋轉相位移變壓器之角度 75 3-5 系統特徵值分析於變動同步發電機之端電壓與旋轉相位移變壓器之角度 78 3-6 系統穩態功率潮流分析於變動同步發電機之功因與旋轉相位移變壓器之角度 89 3-7 系統特徵值分析於變動同步發電機之功因與旋轉相位移變壓器之角度 92 第四章 系統動態與暫態分析 101 4-1 前言 101 4-2 單部同步發電機發生轉矩干擾時,系統之動態響應 103 4-3 電網端發生三相短路故障時,系統之暫態響應 133 4-4 同步發電機於不同端電壓下發生轉矩干擾時,系統之動態響應 163 4-5 同步發電機於不同端電壓下,電網端發生三相短路故障時,系統之暫態響應 174 第五章 結論 185 5-1 結論 185 5-2 未來研究方向 186 參考文獻 187 作者簡介 192

    [1] B. Z. Kaplan and D. Kottic, “Use of a three-phase oscillator model for the compact representation of synchronous generator,” IEEE Trans. Magnetics, vol. 19, no. 3, pp. 1480-1486, May 1983.
    [2] A. M. Stanković and T. Aydin, “Analysis of asymmetrical faults in power systems using dynamic phasors,” IEEE Trans. Power Systems, vol. 15, no. 3, pp. 1062-1068, Aug. 2000.
    [3] J. H. Ceron Guerrero and D. Olguin, “Modeling and dynamic simulation of a salient-pole synchronous generator with eccentricity,” in Proc. IEEE Electric Power Quality and Supply Reliability Conf., 2010, pp. 99-104.
    [4] A. O. Ba, T. Peng, and S. Lefebvre, “Rotary power-flow controller for dynamic performance evaluation–Part I: RPFC modeling,” IEEE Trans. Power Delivery, vol. 24, no. 3, pp. 1406-1416, Jul. 2009.
    [5] A. O. Ba, T. Peng, and S. Lefebvre, “Rotary power-flow controller for dynamic performance evaluation–Part II: RPFC application in a transmission corridor,” IEEE Trans. Power Delivery, vol. 24, no. 3, pp. 1417-1425, Jul. 2009.
    [6] M. H. Abardeh and R. Ghazi, “Rotary power flow controller (RPFC) characteristics analysis,” in Proc. Power Engineering and Optimization Conf., 2011, pp. 358-363.
    [7] H. Fujita, S. Ihara, R. J. Piwko, E. R. Pratico, and J. J. Sanchez, “Simulator model of rotary power flow controller,” in Proc. Power Engineering Society Summer Meeting, vol. 3, 2001, pp. 1794-1797.
    [8] H. Fujita, S. Ihara, E. V. Larsen, E. R. Pratico, and W. W. Price, “Modeling and dynamic performance of a rotary power flow controller,” in Proc. Power Engineering Society Winter Meeting, vol. 2, 2001, pp. 599-604.
    [9] A. O. Ba, T. Peng, and S. Lefebvre, “Rotary power-flow controller for dynamic performance evaluation–Part I: RPFC modeling,” in Proc. ISIE 2008 IEEE International Symposium, 2008, pp. 1469-1475.
    [10] A. O. Ba, T. Peng, and S. Lefebvre, “Rotary power-flow controller for dynamic performance evaluation–Part II: RPFC application in a transmission corridor,” in Proc. ISIE 2008 IEEE International Symposium, 2008, pp. 1476-1482.
    [11] H. Fujita, S. Ihara, E. V. Larsen, and W. W. Price, “Basic characteristics of a rotary power flow controller,” in Proc. Power Engineering Society Winter Meeting, vol. 2, 2000, pp. 1477-1482.
    [12] A. O. Ba, T. Peng, and S. Lefebvre, “Rotary power flow controller modeling for dynamic performance evaluation,” in Proc. Power and Energy Society General Meeting, 2008, pp. 1-10.
    [13] S. C. Verma, F. Yamada, Y. Kunii, F. Ueda, K. Kuroda, M. Kitayama, and Y. Kono, “Study on rotary loop flow controller for futuristic distribution networks,” in Proc. Power and Energy Society General Meeting, 2011, pp. 1-7.
    [14] A. Merkhouf, P. Doyon, and S. Upadhyay, “Variable frequency transformer–Concept and electromagnetic design evaluation,” IEEE Trans. Energy Conversion, vol. 23, no. 4, pp. 989-996, Dec. 2008.
    [15] P. Truman and N. Stranges, “A direct current torque motor for application on a variable frequency transformer,” in Proc. 2007 IEEE Power Engineering Society General Meeting, June 24-28, 2007, Tampa, Florida, USA.
    [16] A. Merkhouf, S. Uphadayay, and P. Doyon, “Variable frequency transformer electromagnetic design concept,” in Proc. 2007 IEEE Power Engineering Society General Meeting, June 24-28, 2007, Tampa, Florida, USA.
    [17] E. Spooner and B. J. Chalmers, “Large superconducting DC drives with separate torque reaction windings,” IEEE Trans. Industry Applications, vol. 31, no. 6, pp. 1297-1305, Nov. 1995.
    [18] L. C. Aguilar and N. Garcia, “Stability analyses of a VFT park using a sequential continuation scheme and the limit cycle method,” IEEE Trans. Power Delivery, vol. 26, no. 3, pp. 1499-1507, Jul. 2011.
    [19] F. B. Ajaei, S. Afsharnia, A. Kahrobaeian, and S. Farhangi, “A fast and effective control scheme for the dynamic voltage restorer,” IEEE Trans. Power Delivery, vol. 26, no. 4, pp. 2398-2406, Oct. 2011.
    [20] K. Li, J. Liu, Z. Wang, and B. Wei, “Strategies and operating point optimization of STATCOM control for voltage unbalance mitigation in three-phase three-wire systems,” IEEE Trans. Power Delivery, vol. 22, no. 1, pp. 413-422, Jan. 2007.
    [21] N. Tambey and M. L. Kothari, “Damping of power system oscillations with unified power flow controller (UPFC),” IEE Proc. Generation, Transmission, and Distribution, vol. 150, no. 2, pp. 129-140, Mar. 2003.
    [22] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
    [23] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [24] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994.
    [25] 陳龍億,變頻變壓器連接於電力系統之功率潮流控制與穩定度分析,國立成功大學電機工程學系碩士論文,2009年6月。
    [26] 林宗仁,永磁/同步發電機與太陽能發電系統之整合研究,國立成功大學電機工程學系碩士論文,2002年6月。
    [27] 李興傑,閘控串聯電容器在感應電機控制特性之研究,國立成功大學電機工程學系碩士論文,2002年6月。
    [28] ABB, [online]. Available: http://www.abb.com/cawp/seitp202, retrieved date: Jul. 1, 2013.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE