| 研究生: |
汪國農 Wang, Kuo-Nung |
|---|---|
| 論文名稱: |
微衛星姿態估測與控制次系統之設計及驗證 Design and Validation of Micro Satellite Attitude Determination and Control Subsystem |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 姿態估測 、微衛星 |
| 外文關鍵詞: | Micro Satellite, Attitude Determination |
| 相關次數: | 點閱:83 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
成功大學的CKUTEX (Cheng-Kung University Technology Experimental Satellite)微衛星計畫係國內自主發展之實驗型微衛星;CKUTEX微衛星之任務為藉由量測衛星與火箭分離階段之數據,包括分離時之位置、速度、姿態以及相關之推力以重建衛星與火箭分離時之推進與控制特性。本論文詳述CKUTEX微衛星姿態估測與控制次系統之設計與實現,並探討分離階段軌道與姿態重建之方式;為針對衛星軌道與姿態進行判定,CKUTEX微衛星將搭載GPS接收器酬載進行時間、位置與速度之量測,並搭載磁力計與太陽感測器於軌道量測資料以結合衛星動態模式進行衛星姿態判定。此外,由於小型發射載具於衛星脫離時有可能存在足以影響操控、通聯與充電之角速度,因此當衛星脫離發射載具後,將使用磁力計、磁力線圈控制姿態以穩定旋轉角速度;而在實驗階段CKUTEX微衛星將嘗試以微推進系統及相搭配之控制單元以控制衛星姿態,並依姿態估測技術估算其效能與各項參數。除了軟體模擬與分析,並於地面建置一套硬體測試迴路(Hardware in the Loop)以模擬太空環境與衛星動態,進而驗證CKUTEX微衛星姿態判別與控制演算法的效能及正確性。
The objective of the CKUTEX (Cheng-Kung University Technology Experimental Satellite) micro-satellite project is developing domestic experimental satellite technique. CKUTEX micro satellite will reconstruct the satellite and launcher’s propulsion and control characteristics by using the data collected at the satellite in separation stage including position, velocity, attitude and torque. The thesis describes the design and implementation of the CKUTEX micro-satellite attitude determination and control subsystem and investigates the method to reconstruct trajectory and attitude in separation stage. To determine the satellite orbit and attitude, the CKUTEX micro-satellite will carry a GPS receiver payload to measure time, position, and velocity. The magnetometer and the sun-sensor will be carried also to determine satellite’s attitude by combining measurement data and satellite dynamic model. In addition, the angular velocity that can affect control, communication, and recharging after separation may exist. To stabilize the angular rate, the satellite will use magnetometer and magnetic torque rods after separation from the launch vehicle. In the experiment stage, the CKUTEX micro-satellite would try to use micro-thruster system with corresponding control unit to control satellite attitude, and compute the performance and parameters with attitude estimation technique. In addition to software simulation and analysis, the hardware in the loop which can simulate space environment and satellite dynamics is also constructed to validate the performance and the correctness of the CKUTEX micro-satellite attitude determination and control algorithm.
[1] C. J. Van Beusekom, R. Lisowski, J. M. Fulton, C. Morand “Three-axes Attitude Determination and Control System Design for Low-cost Micro-satellites” Proceedings of IEEE Aerospace Conference, Vol. 6, pp.6_2615 - 6_2628, 2003
[2] S. T. El M. Brembo, Sensor Modeling, Attitude Determination and Control for Micro-satellite, Master Thesis, Department of Engineering Cybernetics, NTNU, 2005
[3] J. Cemenska, Sensor Modeling and Kalman Filtering Applied to Satellite Attitude Determination, Master Thesis, Department of mechanical Engineering, UC Berkeley, 2005.
[4] Y. J. Cheon, J. H. Kim “Unscented Filtering in a Unit Quaternion Space for spacecraft attitude estimation” IEEE International Symposium on Industrial Electronics, pp.66 – 71, 4-7 June 2007.
[5] J. L. Crassidis, F. LandisMarkley “Unscented Filtering for Spacecraft Attitude Estimation” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 4, 2003.
[6] J. L. Crassidis, F. Landis Markley, Yang Cheng “Survey of Nonlinear Attitude Estimation Methods” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007.
[7] P. Fortescue, J. Stark, G. Swinerd, Spacecraft Systems Engineering, John Wiley & Sons, Inc, 2003.
[8] M. S. Grewal, A. P. Andrews, Kalman Filtering: Theory and Practice Using MATLAB, John Wiley & Sons, Inc, 2001.
[9] P. C. Hughes, Spacecraft Attitude Dynamics, John Wiley & Sons, Inc, 1986.
[10] J. C. Juang and J. J. Miau, , Y.Y. Liu, and B. C. Chen “Earthquake Research from Space: LEAP Microsatellite Design in Taiwan,” Asian Space Conference, Singapore, 2007.
[11] J. C. Juang and J. J. Miau, Y.Y. Liu, and B. C. Chen “Overview of the LEAP: A University MicroSatellite Program at NCKU,” Universat-2007 Symposium, Taiwan, 2007.
[12] S. J. Julier, and J. K. Uhlmann “A New Extension of the Kalman Filter to Nonlinear Systems”, Proceedings Aerosense: The 11th Int. Symposium on Aerospace/Defense Sensing, Simulation and Controls, pp. 182-193, 1997.
[13] M. H. Kaplan, Modern Spacecraft Dynamics & Control, John Wiley & Sons, Inc, 1976
[14] F. L. Lewis, Applied Optimal Control and Estimation – Digital Design and Implementation, Prentice Hall and Texas Instruments, 1992
[15] H. Li, Z. W. Sun, S. J. Zhang “Satellite Attitude Estimation UKF Algorithm Based on Star-Sensor” IMACS Multiconference on "Computational Engineering in Systems Applications"(CESA), 2006.
[16] G. F. Ma, X. Y. Jiang “Unscented Kalman Filter for Spacecraft Attitude Estimation and Calibration using Magnetometer Measurements” Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, pp. 18-21, 2005.
[17] K. L. Makovec, A Nonlinear Magnetic Controller for Three-Axis Stability of Nanosatellites, Master Thesis, Department of Aerospace Engineering, Virginia Polytechnic Institute and State University, 2001.
[18] J. M. Mendel, Lessons in Estimation Theory for Signal Processing, Communications, and Control, Prentice Hall, 1995.
[19] R. van der Merwe and E. A. Wan “The unscented Kalman filter for nonlinear estimation” Proceedings IEEE Symposium Adaptive Syst. Signal Processing, Commun. Control (AS-SPCC), Lake Louise, Alberta, Canada, pp. 153–158, 2000.
[20] A. Scholz, Implementation of Advanced Attitude Determination and Control Techniques into a Nanosatellite, Master Thesis, Department of Aerospace Engineering, NCKU, 2008.
[21] M. J. Sidi, Spacecraft Dynamics and Control: a practical engineering approach, Cambridge University Press, 1997.
[22] E. Silani, M. Lovera “Magnetic spacecraft attitude control: a survey and some new results” Control Engineering Practice, Volume 13, Issue 3, pp. 357-371, March 2005.
[23] B. O. Sunde, Attitude Determination for the Student Satellite nCubeII: Kalman Filter, Master Dissertation, Department of Engineering Cybernetics, NTNU, 2003.
[24] J. K. Tu, S. H. Wu, C. C. Chu “Platform for Attitude Control Experiment (PACE) An Experimental Three-Axis Stabilized CubeSat,” Proceedings 18th AIAA/USU Conference on Small Satellites, SSC-VII, Utah State University, Logan Utah, USA, August 9-12, 2004.
[25] P. Wang, Y. B. Shtessel and Y. Q. Wang “Satellite Attitude Control Using only Magnetorquers,” Proceedings of the Thirtieth Southeastern, System Theory, pp. 500-504, 1998.
[26] J. R. Wertz, Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, 1978.
[27] R.Wisniewski, and M. Blanke, “Fully magnetic attitude control for spacecraft subject to gravity gradient.” Automatica Volume 35, Issue 7, pp. 1201–1214, 1999.
[28] P. Zarchan, Fundamentals of Kalman Filtering – A Practical Approach, American Institute of Aeronautics and Aeronautics, Inc, 2000.
[29] 吳世驊,「皮米級衛星姿態控制次系統之設計及實現」, 成功大學電機工程學系碩士論文, 2006
[30] 孫煜明,「微微衛星姿態控制次系統之設計及模擬」,成功大學電機工程學系碩士論文, 2003
[31] 李愷倫,「皮米衛星姿態判定與控制次系統之設計與測試」,成功大學航空太空工程研究所碩士論文, 2004
[32] 張森喬,「衛星姿態控制即時模擬與原型控制器快速製作」,成功大學電機工程學系碩士論文, 2000