簡易檢索 / 詳目顯示

研究生: 陳富民
Chen, Fu-Ming
論文名稱: 適用於未知取樣資料系統之反覆學習控制和高效能追蹤器:數位重新設計方法
Iterative Learning Control and High Performance Tracker for Unknown Sampled-Data Systems: Digital Redesign Approach
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 146
中文關鍵詞: 反覆學習控制觀測器/卡爾曼濾波器鑑別分散式控制數位重新設計
外文關鍵詞: Iterative learning control, observer/Kalman filter identification, decentralized control, digital redesign
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對未知資料取樣系統,本論文藉由數位重新設計技術提出觀測器/卡爾曼濾波器鑑別為基礎的反覆學習控制和高效能追蹤器,以達到良好的追蹤效果與閉迴路解耦特性。其研究主題陳述如下:首先,針對輸出響應追蹤問題,提出一種適用於非線性資料採樣系統的觀測器/卡爾曼濾波器鑑別為基礎的反覆學習式軌跡追蹤器。接著,針對由多個互聯子系統所組成的大尺度時延系統之控制問題,提出以觀測器/卡爾曼濾波器鑑別為基礎的離散型反覆學習式軌跡追蹤器,以同時獲得強健的解耦特性與良好的追蹤效果。最後,將類比反覆學習機制和具有高增益特性追蹤器的結合,提出一個具有高性能的反覆學習追蹤器,以克服傳統反覆學習控制在學習代數、初始條件和不連續的輸入參考訊號的問題。另外,這個追蹤器也改善了在傳統類比的線性二次式追蹤器和數位再設計追蹤器在暫態響應和權重矩陣比例的問題。在本論文中,以多個例題來說明所提方法之有效性。

    This dissertation proposes observer/Kalman filter identification (OKID)-based iterative learning control (ILC) and high performance tracker for unknown sampled-data systems to obtain good tracking performances and a closed-loop decoupling property by the digital redesign technique. The major research topics of this dissertation are stated as follows: Firstly, an OKID-based iterative learning tracker is proposed to resolve the output tracking problem for nonlinear of sampled-data systems. Secondly, to deal with the control problem of large-scale state-delay systems consisting N interconnected subsystems, an OKID-based discrete iterative learning scheme is developed to simultaneously obtain the robust decoupling property in time domain and the good tracking performance in iterative domain. Finally, to combine analog ILC method and the high-gain property tracker design methodology, a high performance iterative learning tracker is developed to resolve some problems of the traditional ILC on learning epoches, initial condition and discontinuous reference input. Besides, the proposed method also improves the transient response and decrease the ratio of weighting matrices under the traditional analog linear quadratic tracker and digital redesign tracker. Some illustrative examples are given to demonstrate the effectiveness of the proposed methodologies.

    中文摘要 i Abstract ii Acknowledgement iii Contents iv List of Figures vii Symbols and Abbreviations xii Chapter 1 Introduction 1 1.1 Literature Survey 2 1.1.1 Iterative learning control 2 1.1.2 Observer/Kalman filter identification 5 1.1.3 Decentralized control 7 1.1.4 Digital redesign 8 1.2 Dissertation Overview 9 Chapter 2 OKID-Based Iterative Learning Control for Unknown MIMO Nonlinear Systems 11 2.1 Introduction 12 2.2 The Prediction-based Digital Redesign 13 2.2.1 Linear quadratic analog tracker design 13 2.2.2 Observer-based linear quadratic analog tracker design 15 2.2.3 Digital redesign of the linear quadratic analog tracker 16 2.2.4 Digital redesign of the observer-based linear quadratic analog tracker 18 2.2.5 Optimal linearization algorithm 21 2.3 Observer-based Iterative Learning Control 24 2.3.1 Iterative learning control problem 24 2.3.2 Observer design for nonlinear system 26 2.3.3 The ILC scheme 27 2.4 Observer/Kalman Filter Identification 31 2.4.1 Basic observer equations 31 2.4.2 Computation of Markov parameters 35 2.4.2-1 System Markov parameters 35 2.4.2-2 Observer-gain Markov parameters 37 2.4.3 Eigensystem realization algorithm 38 2.4.4 Relationship with the Kalman filter 39 2.4.5 OKID algorithm 43 2.5 OKID-ILC based Tracker for Unknown Sampled-data Systems 45 2.6 Illustrative Examples 50 2.7 Summary 60 Chapter 3 OKID-Based Decentralized Iterative Learning Tracker for Unknown Interconnected Large-Scale Systems 61 3.1 Introduction 62 3.2 OKID-based Decentralized Modeling and Control 64 3.3 Iterative Learning Control 66 3.3.1 The design of ILC controller 67 3.3.2 Problem formulation and discrete ILC updating law 69 3.4 Summaries of the Proposed Design Procedure 70 3.5 An Illustrative Example 71 3.6 Summary 89 Chapter 4 Iterative Learning Control and High Performance Tracker for Unknown Sampled-Data Systems 90 4.1 Introduction 91 4.2 A New Digital Redesign Tracker Combined with the Modified Iterative Learning Control 94 4.2.1 Derivation of the analog ILC for deterministic continuous-time systems 95 4.2.2 Derivation of the new digital redesign ILC for deterministic sampled-data systems 98 4.2.2-1 High performance LQT based on improved ILC algorithm 98 4.2.2-2 Improved ILC based on high performance LQT design algorithm 100 4.3 Procedures for New Analog and Digital Redesign LQTs based on the PD-type ILC Algorithm 103 4.3.1 Procedure for new analog LQT based on the PD-type ILC algorithm 103 4.3.2 Procedure for new digital redesign LQT based on the PD-type ILC algorithm 104 4.4 Illustrative Examples 105 4.5 Summary 131 Chapter 5 Conclusions 133 5.1 Conclusions 133 5.2 Future Research Directions 134 References 135 Biography 145 Publication List 146

    [1] Ahn, H. S., Chen, Y. Q., and Moore, K. L., “Iterative learning control: brief survey and categorization,” IEEE Transactions on System, Man, and Cybernetics, Part C: Applications and Reviews, vol. 37(6), pp. 1099-1121, 2007.
    [2] Andrei, N., Sparse Systems: Digraph Approach of Large-Scale Linear Systems Theory. Verlag TÜV Rheinland, Köln, 1985.
    [3] Arimoto, S., Kawamura, S. and Miyazaki, F., “Bettering operation of robots by learning,” Journal of Robotic Systems, vol. 1(2), pp. 123-140, 1984.
    [4] Arimoto, S., “Learning control theory for robotic motion,” International Journal of Adaptive Control and Signal Processing, vol. 4(6) , pp. 543-564, 1990.
    [5] Bondi, P., Casalino, G. and Gambardella L., “On the iterative learning control theory for robotic manipulators,” IEEE Journal of Robotics and Automation, vol. 4(1), pp. 14-22, 1988.
    [6] Bristow, D. A., Tharayil, M., and Alleyne, A. G., “A survey of iterative learning control,” IEEE Control Systems Magazine, vol. 26(3), pp. 96-114, 2006.
    [7] Chang, W., Park, Y. H., Joo, Y. H. and Chen, G. , “Design of sampled-data fuzzy-model-based control systems by using intelligent digital redesign,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 49(4) , pp. 509-517, 2002.
    [8] Chang, Y. P., Tsai, J. S. H. and Shieh, L.S., “Optimal digital redesign of hybrid cascaded state-delay systems under state and control constraints,” IEEE Transactions Circuits System, vol. 49(9), pp. 1382-1392, 2002.
    [9] Chang, Y. P., Malki, H., Tsai, J. S. H., Shieh, L. S. and Chen, G.., “Chaos-EP-based digital redesign of uncertain hybrid time-delay systems with state and input constraints,” IEEE Transactions on Instrumentation & Measurement, vol. 58(12), pp. 3959-3971, 2009.
    [10] Chen, C. W., Hung, J. K., Phan, M. and Juang, J. N., “Integrated system identification and modal state estimation for control of large flexible space structures,” Journal of Guidance, Control, and Dynamics, vol. 15(1), pp. 88-95, 1992.
    [11] Chen, G. and Ueta, T., “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos, vol. 9, pp. 1465-1466, 1999.
    [12] Chen, Y. and Wen, C., Iterative Learning Control: Convergence, Robustness and Applications. Springer-Verlag, London, 1999.
    [13] Chen, Y. Q., Moore, K. L., Yu, J. and Zhang, T., “Iterative learning control and repetitive control in hard disk drive industry-A tutorial,” International Journal of Adaptive Control and Signal Processing, vol. 22(4), pp. 325-343, 2008.
    [14] Chen, W. S., Li, R. H. and Li, J., “Observer-based adaptive iterative learning control for nonlinear systems with time-varying delays,” International Journal of Automation and Computing, vol. 7(4), pp. 438-446, 2010.
    [15] Chen, F. M., Tsai, J. S. H., Guo, S. M. and Shieh, L. S., “New iterative learning control and high performance tracker for sampled-data systems,” International Journal of Adaptive Control and Signal Processing, 2011 (In revision).
    [16] Chien, C. J., “A combined adaptive law for fuzzy iterative learning control of nonlinear systems with varying control tasks,” IEEE Transactions on Fuzzy Systems, vol. 16(1), pp. 40-51, 2008.
    [17] Chu, B. and Owens, D. H., “Accelerated norm-optimal iterative learning control algorithms using successive projection,” International Journal of Control, vol. 82(8), pp. 1469-1484, 2009.
    [18] Chow, T. W. S. and Fang, Y., “An iterative learning control method for continuous-time systems based on system theory,” IEEE Transactions on Circuits and Systems-I, Fundamental Theory and Applications, vol. 45(4), pp. 683-689, 1998.
    [19] Davison, E. J., “The robust decentralized control of a servomechanism problem for composite system with input-output interconnection,” IEEE Transactions on Automatic Control, vol. 24(2), pp. 325-327, 1979.
    [20] Davison, E. J. and Aghdam, A. G., Decentralized Control of Large-Scale Systems. Springer Verlag, 2011.
    [21] Dedieu, H. and Ogorzalek, M. J., “Controlling chaos in Chua’s circuit via sampled inputs,” International Journal of Bifurcation Chaos, vol. 4(2), pp. 447-455, 1994.
    [22] Doh, T. Y., Moon, J. H., Jin, K. B., and Chung, M. J., “Robust iterative learning control with current feedback for uncertain linear systems,” International Journal of System Science, vol. 30(1), pp. 39-47, 1999.
    [23] Du, Y. Y., Tsai, J. S. H., Guo, S. M., Su, T. J. and Chen, C. W., “Observer-based iterative learning control with evolutionary programming algorithm for MIMO nonlinear systems,” International Journal of Innovative Computing, Information and Control, vol. 7(3), pp. 1357-1373, 2011.
    [24] Freeman, V. T., Alsubaie, M.A., Cai, Z., Rogers, E. and Lewin, P. L., “Model and experience-based initial input construction for iterative learning control,” International Journal of Adaptive Control and Signal Processing, vol. 25(5), pp. 430-447, 2011.
    [25] Gilbert, E. G., “Controllability and observability in multivariable control systems,” SIAM Journal on Control, vol. 2(1), pp. 128-151, 1963.
    [26] Gavel, D. T. and Seljuk, D. D., “Decentralized adaptive control: Structural conditions for stability,” IEEE Transactions on Automatic Control, vol. 34(4), pp. 413-426, 1989.
    [27] Guo, S. M., Shieh, L. S., Chen, G.. and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47(11), pp. 1557-1570, 2000.
    [28] Guo, S. M. , Shieh, L. S., Lin, C. F. and Chandra, J., “State-space self-tuning control for nonlinear stochastic and chaotic hybrid systems,” International , Journal of Bifurcation Chaos, vol. 11(4) , pp. 1079-1113, 2001.
    [29] Hao, X., Owens, D. and Daley, S., “Proportional difference type iterative learning control algorithm based on parameter optimization,” IEEE International Control and Decision Conference, Yantai, Shandong, Chinese, pp. 3136-3141, 2008.
    [30] Hillenbrand, S. and Pandit, M., “An iterative controller with reduced sampling rate for plants with variations of initial states,” International Journal of Control, vol. 73(10), pp. 882-889, 2000.
    [31] Ho, B. L. and Kalman, R.E., “Effective construction of linear state-variable models from input-output data,” Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, University of Illinois, Monticello, IL, pp. 449-459, 1965.
    [32] Ioannou, P. A. and Sun J., Robust Adaptive Control. Prentice-Hall, Englewood, 1996.
    [33] Jiang, P., Bamforth, L. C. A., Feng, Z., Baruch, J. E. F. and Chen, Y. Q., “Indirect iterative learning control for a discrete visual servo without a camera-robot model,” IEEE Transactions on System, Man, and Cybernetics Part B: Cybernetics, vol. 37(4), pp. 863-876, 2007.
    [34] Joo, Y. H., Chen, G. and Shieh, L. S., “Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems,” IEEE Transactions Fuzzy Systems, vol. 7(4), pp. 394-408, 1999.
    [35] Juang, J. N., Pappa, R. S., “Effects of noise on modal parameters identified by the eigensystem realization algorithm,” Journal of Guidance, Control and Dynamics, vol. 3, pp. 294-303, 1986.
    [36] Juang, J. N. and Pappa, R. S., “A comparative overview of modal testing and system identification for control of structures,” Shock and Vibration Digest, vol. 20(5), pp. 4-15, 1988.
    [37] Juang, J. N., Horta, L. G. and Longman, R. W., “Input/output system identification: learning from repeated experiments,” AIAA Monograph on Progress in Astronautics and Aeronautics, vol. 29, pp. 87-99, 1990.
    [38] Juang, J. N., Applied System Identification. Prentice-Hall, Englewood Cliffs, New Jersey, 1994.
    [39] Kawamura, S., Miyazaki, F. and Arimoto, S., “Realization of robot motion based on a learning method,” IEEE Transactions on System, Man and Cyberentic, vol. 18(1), pp. 126-134, 1988.
    [40] Kim, T. A. and Sugie, T., “An iterative learning control based identification for a class of MIMO continue-time systems in the presence of fixed input disturbance and measurement noises,” International Journal of Systems Science, vol. 38(9), pp. 737-748, 2007.
    [41] Kuc, T. Y., Lee, J. S. and Nam, K., “An iterative learning control theory for a class of nonlinear dynamic systems,” Automatica, vol. 28(6), pp. 1215-1221, 1992.
    [42] Kuo, B. C., Digital Control System. Holt, Rinehart, and Winston, New York, 1980.
    [43] Kuo, B. C., Automatic Control Systems. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.
    [44] Kim, D. I. and Kim, S., “An iterative learning control method with application for CNC machine tools,” IEEE Transaction on Industry Applications, vol. 32(1), pp. 66-72, 1996.
    [45] Lewis, F. L. and Syrmos, V. L., Optimal Control. John Wiley & Sons, New York, 1995.
    [46] Lee, H. J., Park, J. B. and Joo, Y. H., “An efficient observer-based sampled-data control: digital redesign approach,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 50(12), pp. 1595-1601, 2003.
    [47] Li, X. D., Chow, T. W. S. and Ho J. K.L., “ system theory based iterative learning control for linear continuous systems with time delays,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 52(7), pp. 1421-1430, 2005.
    [48] Li, X. D., Chow, T. W. S. and Ho J. K.L., “Iterative learning control for a class of nonlinear discrete-time systems with multiple input delays,” International Journal of Systems Science, vol. 39(4), pp. 361-369, 2008.
    [49] Liu, C., Xu, J. and Wu, J., “On iterative learning control with high-order internal models,” International Journal of Adaptive Control and Signal Processing, vol. 24(9), pp. 731-742, 2010.
    [50] Meng D., Jia, Y., Du, J. and Yu, F., “Robust learning controller design for MIMO stochastic discrete-time systems: An -based approach,” International Journal of Adaptive Control and Signal Processing, vol. 25(7), pp. 653-670, 2011.
    [51] Mi, C., Lin. H. and Zhang, Y., “Iterative learning control of antilock braking of electric and hybrid vehicles,” IEEE Transactions on Vehicular Technology, vol. 54(2), pp. 486-494, 2005.
    [52] Moore, K. L., “Iterative learning control - an expository overview,” Applied and Computational Control, Signal, and Circuits, vol. 1, pp.151-214, 1999.
    [53] Norrlof, M., “An adaptive iterative learning control algorithm with experiments on an industrial robot,” IEEE Transactions on Robotics and Autonation, vol. 18(2), pp. 245-251, 2002.
    [54] Ouyang, P. R., Petz, B. A. and Xi, F. F., “Iterative learning control with switching gain feedback for nonlinear systems,” Journal of Computational and Nonlinear Dynamics, vol. 6(1), art. no. 011020, 2011.
    [55] Owens, D. H. and Hatonen, J., “Iterative learning control – An optimization paradigm,” Annual Reviews in Control, vol. 29(1), pp. 57-70, 2005.
    [56] Pappa, R. S. and Juang, J. N., “Some experiences with the eigensystem realization algorithm,” Sound and Vibration, vol. 22(1), pp. 30-35, 1988.
    [57] Phan, M., Juang, J. N. and Longman, R. W., “Identification of linear multivariable systems from a single set of data by identification of observers with assigned real egienvalues,” Journal of Astronautical Sciences, vol. 40(2), pp. 261-279, 1992.
    [58] Phan, M., Horta, L. G., Juang, J. N. and Longman, R.W., “Linear system identification via an asymptotically stable observer”, Journal of Optimization Theory and Applications, vol. 79(1), pp. 59-86, 1993.
    [59] Rajamani, R., “Observers for Lipschitz nonlinear systems,” IEEE Transactions Automatic Control, vol. 43(3), pp. 397-401, 1998.
    [60] Ralston, A., A First Course in Numerical Analysis. Dover Publications: McGraw-Hill, NY, 1965.
    [61] Ramezani, M. H. and Sadati N., “Hierarchical optimal control of large-scale nonlinear chemical processes,” ISA Transactions, vol. 48(1), pp. 28-47, 2009.
    [62] Ruan, X., Bien, Z. and Park, K. H., “Iterative learning controllers for discrete-time large-scale systems to track trajectories with distinct magnitudes,” International Journal of Systems Science, vol. 36(4), pp. 221-233, 2005.
    [63] Ruan, X., Zenn, Z. and Park, K. H., “Decentralized iterative learning control to large-scale industrial processes for nonrepetitive trajectory tracking,” IEEE Transactions on Systems Man and Cybernetics Part A- Systems and Humans, vol. 38(1), pp. 238-252, 2008.
    [64] Sandell, N. R., Jr., Varaiya, P., Athans, M. and Safonov, M. G., “Survey of decentralized control methods for large scale systems,” IEEE Transactions on Automatic Control, vol. 23(2), pp. 108-128, 1978.
    [65] Shieh, L. S., Dib, H. M. and Yates, R. E., “Sequential design of linear quadratic state regulators via the optimal root-locus techniques,” Proceedings of the IEE (England) Part D: Control Theory and Applications, vol. l35(4), pp. 289-294, 1988.
    [66] Shieh, L. S., Dib, H. M. and Ganesan, S., “Linear quadratic regulators with eigenvalue placement in a specified region,” Automatica, vol. 24(6), pp. 8l9-823, 1988.
    [67] Shieh, L. S., Chen, G. and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems,” International Journal of Systems Science, vol. 23(6), pp. 839-854, 1992.
    [68] Shieh, L. S., Wang, W. M. and Appu Panicker, M. K., “Design of PAM and PWM digital controller for cascaded analog system,” ISA Transactions, vol. 37(3), pp. 201-213, 1998.
    [69] Shieh., L. S., Wang, W and Tsai J. S. H., “Optimal digital redesign of hybrid uncertain systems using genetic algorithms,” IEE Processing-Control Theory Applications, vol. 146(2), pp. 119-130, 1999.
    [70] Shieh, L, S., Wang, W. M., Bain, J. and Chandra, J., “Design of lifted dual-rate digital controllers for X-38 vechicle,”Journal of Guidance, Control and Dynamics, vol. 23(4), pp. 629-639, 2000.
    [71] Šiljak, D. D., Large Scale Dynamic Systems: Stability and Structure. North-Holland, New York, 1978.
    [72] Singh, M. G., Decentralised Control. North-Holland, Amsterdam, 1981.
    [73] Sun, M. and Wang, D., “Initial shift issues on discrete-time iterative learning control with system relative degree,” IEEE Transactions on Automatic Control, vol. 48(1), pp. 144-148, 2003.
    [74] Tan, K. K., Zhao, S. and Xu, J. X., “Online automatic tuning of a proportional integral derivative controller based on an iterative learning control approach,” IET Control Theory and Application, vol. 1(1), pp. 90-96, 2007.
    [75] Tayebi, A. and Xu, J. X., “Observer-based iterative learning control for a class of time-varying nonlinear systems,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 50(3), pp.452-455, 2003.
    [76] Tayebi, A. and Chien, C. J., “A unified adaptive iterative learning control framework for uncertain nonlinear systems,” IEEE Transactions on Automatic Control, vol. 52(10), pp. 1907-1913, 2007.
    [77] Tsai, J. S. H., Chien, T. H., Guo, S. M., Chang, Y. P. and Shieh, L. S., “State-space self-tuning control for stochastic fractional-order chaotic systems,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 54(3), pp. 632-642, 2007.
    [78] Tsai, J. S. H., Wei, C. L., Guo, S. M., Shieh, L. S. and Liu, C. R., “EP-based adaptive tracker with observer and fault estimator for nonlinear time-varying sampled-data systems against actuator failures,” Journal of the Franklin Institute, vol. 345(5), pp. 508-535, 2008.
    [79] Tsai, J. S. H., Chen, F. M., Guo, S. M., Chen C. W. and Shieh, L. S., “A novel tracker for a class of sampled-data nonlinear systems,” Journal of Vibration and Control, vol. 17(1), pp. 81-101, 2011.
    [80] Tsai, J. S. H., Du, Y. Y., Huang, P. H., Guo, S. M. and Shieh, L. S., “Iterative learning-based decentralized adaptive tracker for large-scale systems: A digital redesign approach,” ISA Transactions, vol. 50, pp. 344-356, 2011.
    [81] Tsai, J. S. H., Du, Y. Y., Zhuang, W. Z., Guo, S. M., Chen, C. W. and Shieh, L. S., “Optimal anti-windup digital redesign of multi-unput multi-output control systems under input constraints,” IET Control Theory Applications, vol. 5(3), pp. 447-464, 2011.
    [82] Tsai, J. S. H., Chen, F. M., Tze, Y. Y., Guo, S. M. and Shieh, L. S., “Efficient decentralized iterative learning tracker for unknown sampled-data interconnected large-scale state-delay system with closed-loop decoupling property,” ISA Transactions, 2011 (Accept for publication ).
    [83] Wang, Y., Gao, F. and Dole III, F. J., “Survey on iterative learning control, repetitive control, and run-to-run control,” Journal of Process Control, vol. 19(10), pp. 1589-1600, 2009.
    [84] Wu, H. S., “Decentralized robust control for a class of large-scale interconnected systems with uncertainties,” International Journal of System Science, vol. 20(12), pp. 2597-2608, 1989.
    [85] Wu, H. S., “Decentralized iterative learning control for a class of large scale interconnected dynamical systems,” Journal of Mathematical Analysis and Applications, vol. 327(1), pp. 233-245, 2007.
    [86] Xu, J., Chen, G. and Shieh, L. S., “Digital redesign for controlling chaotic Chua’s circuit,” IEEE Transaction Aerospace and Electronic System, vol. 32, pp. 1488-1499, 1996.
    [87] Xu, J. X. and Qu, Z., “Robust learning control for a class of nonlinear systems,” IEEE Proceedings of the 35th Conference on Decision and Control, vol. 3, pp. 2484-2489, 1996.
    [88] Xu, J. X. and Tan, Y., Linear and Nonlinear Iterative Learning Control. Springer-Berlin, Heidelberg, 2003.
    [89] Xu, J. X., Panda, S. K., and Lee, T. H., Real-time Iterative Learning Control Design and Applications. Springer-Verlag, London, 2009.
    [90] Xu, X. X. and Xu, J. X., “Observer based learning control for a class of nonlinear systems with time-varying parametric uncertainties,” IEEE Transactions on Automatic Control, vol. 49(2), pp. 275-281, 2004.
    [91] Ye, Y., Tayebi, A. and Liu, X., “All-pass filtering in iterative learning control,” Automatica, vol. 45(1), pp. 257-264, 2009.
    [92] Yi, S., Nelson, P. W. and Ulsoy A. G., “Controllability and observability of systems of linear delay differential equations via the matrix Lambert W function,” IEEE Transactions on Automatic, vol. 53(3), pp. 854-860, 2008.
    [93] Yokoyama, T., Kosuge, K. and Furuta, K., “Digital redesign of robot control,” IEEE Industrial Electronics Society of the Annual Conference, vol.2, pp.409-414, 1989.

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE